Determine a equação da reta que passa pelos pontos P(2, 7) e Q(–1, –5) .
*URGENTE*
Soluções para a tarefa
Respondido por
9
Resposta:
Temos que a lei de formação de uma equação reduzida da reta é dada por y = mx + c.
Considerando que ela passa por P(2, 7) e Q(–1, –5), temos:
P(2, 7)
7 = m * 2 + c
7 = 2m + c
2m + c = 7
Q(–1, –5)
–5 = m * (–1) + c
–5 = –m + c
–m + c = –5
Nesse caso, os valores dos coeficientes angular (m) e linear (c) serão calculados por um sistema de equações. Veja:
Isolando c na 2ª equação:
–m + c = –5
c = –5 + m
Substituindo c na 1ª equação:
2m + c = 7
2m + (–5 + m) = 7
2m – 5 + m = 7
3m = 7 + 5
3m = 12
m = 12/3
m = 4
Calculando o valor de c:
c = –5 + m
c = –5 + 4
c = –1
Portanto, a equação reduzida da reta que passa pelos pontos P(2, 7) e Q(–1, –5), corresponde à expressão y = 4x – 1.
Perguntas interessantes