Determine a distância entre os pontos dados.
a) A(5, 2) e B(1, 3)
b) C(21, 4) e D(22, 23)
c) E(24, 23) e O(0, 0)
d) F(25, 4) e G(2, 25)
e) H(21, 5) e I(21, 12)
f) J(22, 21) e K(3, 24)
Soluções para a tarefa
Resposta:
A) d(a,b)= √(x₂-x₁)²+(y₂-y₁)²
d(a,b)= √(5-1)²+(3-2)²
d(a,b)= √4²+1²
d(a,b)= √16+1= √17
B) d(e,o)=√(x₂-x₁)²+(y₂-y₁)²
d(e,o)= √(0+4)²+(0+3)²
d(e,o)= √4²+3²
d(e,o)= √16+9
d(e,o)= √25= 5
C) d(f,g)= √(x₂-x₁)²+(y₂-y₁)²
d(f,g)= √(2+5)²+(4+5)²
d(f,g)= √7²+9²
d(f,g)= √49+81
d(f,g)= √130
D) d(h,i)= √(x₂-x₁)²+(y₂-y₁)²
d(h,i)= √(-1+1)²+(12-5)²
d(h,i)= √0²+7²
d(h,i)= √49= 7
E) d(j,i)= √(x₂-x₁)²+(y₂-y₁)²
d(j,i)= √(3+2)²+(-1+4)²
d(j,i)= √5²+3²
d(j,i)= √25+9
d(j,i)= √34
F) d(l,m)= √(x₂-x₁)²+(y₂-y₁)²
d(l,m)= √(-4+4)²+(3+7)²
d(l,m)= √0²+10²
d(l,m)= √100= 10
G) d(n,p)= √(x₂-x₁)²+(y₂-y₁)²
d(n,p)= √(√2+√2)²+(√2+√2)²
d(n,p)= √(2+2+2+2)+(2+2+2+2)
d(n,p)= √8+8
d(n,p)= √16= 4
H) d(q,r)= √(x₂-x₁)²+(y₂-y₁)²
d(q,r)= √(1+3)²+(3-3)²
d(q,r)= √4²+0²
d(q,r)= √16= 4
Explicação passo-a-passo:
Resposta:
a) A(5, 2) e B(1, 3)
(a,b)= √(x₂-x₁)²+(y₂-y₁)²
(a,b)= √(5-1)²+(3-2)²
(a,b)= √4²+1²
(a,b)= √16+1= √17
b) C(21, 4) e D(22, 23)
(c,d)=√(x₂-x₁)²+(y₂-y₁)²
= √(21-22)²+(4+23)²
= √1²+19²
= √1+361
= √362= 19
c) E(24, 23) e O(0, 0)
(e,o)= √(x₂-x₁)²+(y₂-y₁)²
= √(24-0)²+(23-0)²
= √24²+23²
= √576+529
= √1105=33,24
d) F(25, 4) e G(2, 25)
(f,g)= √(x₂-x₁)²+(y₂-y₁)²
= √(25-2)²+(4-25)²
= √23²+19²
=529+361
= √890= 29,83
e) H(21, 5) e I(21, 12)
(h,i)= √(x₂-x₁)²+(y₂-y₁)²
= √(21-21)²+(5-12)²
= √0²+7²
= √19=7
f) J(22, 21) e K(3, 24)
(j,k)= √(x₂-x₁)²+(y₂-y₁)²
= √(22-3)²+(21-24)²
= √19²+3²
= √361+9
= √370= 19,23
Explicação passo-a-passo: