determine a derivada pela definições de limite, sendo dado: f(x) = 5^2-1
f(x) = 4x-3
niltonjr2001:
5²-1 ou 5x²-1?
Soluções para a tarefa
Respondido por
1
Olá
Derivada por definição
![\displaystyle \mathsf{ \lim_{h \to 0} ~ \frac{f(x+h)-f(x)}{h} }\\\\\\\text{Dado f(x)}\\\\\\\mathsf{f(x)=5x^2-1}\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{(5\cdot (x+h)^2-1)-(5x^2-1)}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{(5\cdot(x^2+2xh+h^2)-1)-(5x^2-1)}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{\diagup\!\!\!\!\!5x^2+10xh+5h^2-\diagup\!\!\!1-\diagup\!\!\!\!\!5x^2+\diagup\!\!\!\!1}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{10xh+5h^2}{h} } \displaystyle \mathsf{ \lim_{h \to 0} ~ \frac{f(x+h)-f(x)}{h} }\\\\\\\text{Dado f(x)}\\\\\\\mathsf{f(x)=5x^2-1}\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{(5\cdot (x+h)^2-1)-(5x^2-1)}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{(5\cdot(x^2+2xh+h^2)-1)-(5x^2-1)}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{\diagup\!\!\!\!\!5x^2+10xh+5h^2-\diagup\!\!\!1-\diagup\!\!\!\!\!5x^2+\diagup\!\!\!\!1}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{10xh+5h^2}{h} }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7Bf%28x%2Bh%29-f%28x%29%7D%7Bh%7D++%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BDado+f%28x%29%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%28x%29%3D5x%5E2-1%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7B%285%5Ccdot+%28x%2Bh%29%5E2-1%29-%285x%5E2-1%29%7D%7Bh%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7B%285%5Ccdot%28x%5E2%2B2xh%2Bh%5E2%29-1%29-%285x%5E2-1%29%7D%7Bh%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%215x%5E2%2B10xh%2B5h%5E2-%5Cdiagup%5C%21%5C%21%5C%211-%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%215x%5E2%2B%5Cdiagup%5C%21%5C%21%5C%21%5C%211%7D%7Bh%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7B10xh%2B5h%5E2%7D%7Bh%7D++%7D)
Colocando o 'h' em evidencia
![\displaystyle \mathsf{ \lim_{h \to 0} ~ \frac{\diagup\!\!\!\!h(10x+5h)}{\diagup\!\!\!\!h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ (10x+5h) ~=~10x+5\cdot 0~=~\boxed{10x} }}~~\Leftarrow \text{Resposta} \displaystyle \mathsf{ \lim_{h \to 0} ~ \frac{\diagup\!\!\!\!h(10x+5h)}{\diagup\!\!\!\!h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ (10x+5h) ~=~10x+5\cdot 0~=~\boxed{10x} }}~~\Leftarrow \text{Resposta}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21h%2810x%2B5h%29%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21h%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%2810x%2B5h%29+%7E%3D%7E10x%2B5%5Ccdot+0%7E%3D%7E%5Cboxed%7B10x%7D+%7D%7D%7E%7E%5CLeftarrow+%5Ctext%7BResposta%7D)
________________________________________________________
![\displaystyle \mathsf{ \lim_{h \to 0} ~ \frac{f(x+h)-f(x)}{h} }\\\\\\\text{Dado f(x)}\\\\\\\mathsf{f(x)=4x-3}\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{(4(x+h)-3)-(4x-3)}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{\diagup\!\!\!\!4x+4h-\diagup\!\!\!\!3-\diagup\!\!\!\!\!4x+\diagup\!\!\!\!\!3}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{4\diagup\!\!\!\!h}{\diagup\!\!\!\!h} ~=~\boxed{4}} \displaystyle \mathsf{ \lim_{h \to 0} ~ \frac{f(x+h)-f(x)}{h} }\\\\\\\text{Dado f(x)}\\\\\\\mathsf{f(x)=4x-3}\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{(4(x+h)-3)-(4x-3)}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{\diagup\!\!\!\!4x+4h-\diagup\!\!\!\!3-\diagup\!\!\!\!\!4x+\diagup\!\!\!\!\!3}{h} }\\\\\\\mathsf{ \lim_{h \to 0} ~ \frac{4\diagup\!\!\!\!h}{\diagup\!\!\!\!h} ~=~\boxed{4}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7Bf%28x%2Bh%29-f%28x%29%7D%7Bh%7D++%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BDado+f%28x%29%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%28x%29%3D4x-3%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7B%284%28x%2Bh%29-3%29-%284x-3%29%7D%7Bh%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%214x%2B4h-%5Cdiagup%5C%21%5C%21%5C%21%5C%213-%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%214x%2B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%213%7D%7Bh%7D++%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B+%5Clim_%7Bh+%5Cto+0%7D+%7E+%5Cfrac%7B4%5Cdiagup%5C%21%5C%21%5C%21%5C%21h%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21h%7D++%7E%3D%7E%5Cboxed%7B4%7D%7D)
Derivada por definição
Colocando o 'h' em evidencia
________________________________________________________
Perguntas interessantes
Matemática,
11 meses atrás
Artes,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Espanhol,
1 ano atrás
Português,
1 ano atrás