Determine a área de um triangulo equilátero ABC cuja altura mede √6
Soluções para a tarefa
Respondido por
1
Num triângulo equilátero os lados e ângulos são iguais, com isso a altura é, também, a mediana, mediatriz do lado oposto e bissetriz do ângulo. Chamando de L o lado do triângulo temos:
L² = (L/2)² + (√6)²
L² = L²/4 + 6
4L² = L² + 24
3L² = 24
L² = 8 => L = 2√2
.........
A área do triângulo é => A = b.h/2
Se a base é igual ao lado (L), temos:
A = L.a // sendo L = 2√2 e a = √6
A = (2√2.√6)/2
A = √2.√6
A = √12
A = √(4.3)
A = 2√3
A área do triângulo equilátero de altura igual a √6, será 2√3.
L² = (L/2)² + (√6)²
L² = L²/4 + 6
4L² = L² + 24
3L² = 24
L² = 8 => L = 2√2
.........
A área do triângulo é => A = b.h/2
Se a base é igual ao lado (L), temos:
A = L.a // sendo L = 2√2 e a = √6
A = (2√2.√6)/2
A = √2.√6
A = √12
A = √(4.3)
A = 2√3
A área do triângulo equilátero de altura igual a √6, será 2√3.
Perguntas interessantes
Química,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
1 ano atrás
História,
1 ano atrás
Biologia,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás