Matemática, perguntado por alexmendesaz38, 5 meses atrás

Determine a área aproximada entre a função g(x) = 2x² - 18 e o eixo x, sabendo que o valor da abscissa varia de 4 a 5.

Soluções para a tarefa

Respondido por solkarped
14

✅ Após resolver os cálculos, concluímos que a área procurada é:

  \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S = \int_{4}^{5}(2x^{2} - 18)\,dx = \frac{68}{3}\,u.\,a.\:\:\:}}\end{gathered}$}

Sejam os dados:

            \Large\begin{cases}\tt g(x) = 2x^{2} - 18\\ \tt a = 4\\ \tt b = 5\end{cases}

Para calcular a área "S" entre a função polinomial e o intervalo referido devemos calcular a integral definida no referido intervalo.

Sabendo que o TFC - Teorema Fundamental do Cálculo, diz:

 \Large\displaystyle\text{$\begin{gathered}\tt S = \int_{a}^{b}g(x)\,dx = G(x)|_{a}^{b} = G(b) - G(a)\end{gathered}$}

Então, temos:

     \Large\displaystyle\text{$\begin{gathered}\tt S = \int_{a}^{b}g(x)\,dx\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered}\tt = \int_{4}^{5}(2x^{2} - 18)\,dx\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{2x^{2 + 1}}{2 + 1} - 18x + c\bigg)\bigg|_{4}^{5}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{2x^{3}}{3} - 18x + c\bigg)\bigg|_{4}^{5}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{2\cdot5^{3}}{3} - 18\cdot5 + c\bigg) - \bigg(\frac{2\cdot4^{3}}{3} - 18\cdot4 + c\bigg)\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{250}{3} - 90 + c\bigg) - \bigg(\frac{128}{3} - 72 + c\bigg)\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered}\tt = \frac{250}{3} - 90 + c - \frac{128}{3} + 72 - c\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered}\tt = \frac{250}{3} - 90 - \frac{128}{3} + 72\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered}\tt = \frac{250 - 270 - 128 + 216}{3}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered}\tt = \frac{68}{3}\end{gathered}$}

Portanto, a área é:

    \Large\displaystyle\text{$\begin{gathered}\tt S = \frac{68}{3}\,u.\,a.\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/13443083
  2. https://brainly.com.br/tarefa/26094604
  3. https://brainly.com.br/tarefa/22266678
  4. https://brainly.com.br/tarefa/51823021
  5. https://brainly.com.br/tarefa/38453776
  6. https://brainly.com.br/tarefa/51837328
  7. https://brainly.com.br/tarefa/25265066
  8. https://brainly.com.br/tarefa/52068651
  9. https://brainly.com.br/tarefa/24160100
  10. https://brainly.com.br/tarefa/46169125
  11. https://brainly.com.br/tarefa/52558140
  12. https://brainly.com.br/tarefa/52611877

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe  \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Respondido por gabrielvitorinofirmi
4

Resposta:

9,89

Explicação passo a passo:

Perguntas interessantes