Determine 7°termo da p.g (1/9 1/3...1)
Soluções para a tarefa
Respondido por
2
Equação de uma P.G é ![\mathsf{a_n=a_1\cdot q^{n-1}} \mathsf{a_n=a_1\cdot q^{n-1}}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba_n%3Da_1%5Ccdot+q%5E%7Bn-1%7D%7D)
Onde q é a razão que é dada pela divisão de um termo pelo seu antecessor:
![\mathsf{q=\dfrac{a_n}{a_{n-1}}\Rightarrow q=\dfrac{\frac{1}{3}}{\frac{1}{9}}\Rightarrow q=\dfrac{1}{\diagup\!\!\!\!3}\cdot \dfrac{\diagup\!\!\!\!9}{1}\Rightarrow \boxed{\mathsf{q=3}}} \mathsf{q=\dfrac{a_n}{a_{n-1}}\Rightarrow q=\dfrac{\frac{1}{3}}{\frac{1}{9}}\Rightarrow q=\dfrac{1}{\diagup\!\!\!\!3}\cdot \dfrac{\diagup\!\!\!\!9}{1}\Rightarrow \boxed{\mathsf{q=3}}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bq%3D%5Cdfrac%7Ba_n%7D%7Ba_%7Bn-1%7D%7D%5CRightarrow+q%3D%5Cdfrac%7B%5Cfrac%7B1%7D%7B3%7D%7D%7B%5Cfrac%7B1%7D%7B9%7D%7D%5CRightarrow+q%3D%5Cdfrac%7B1%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%213%7D%5Ccdot+%5Cdfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%219%7D%7B1%7D%5CRightarrow+%5Cboxed%7B%5Cmathsf%7Bq%3D3%7D%7D%7D)
Achando o 7º termo:
![\mathsf{a_1=\dfrac{1}{9}}\\\\\\\mathsf{a_7=\dfrac{1}{9}\cdot 3^{7-1}}\\\\\\\mathsf{a_7=\dfrac{1}{9}\cdot3^6}\\\\\\\mathsf{a_7=\dfrac{1}{9}\cdot 729}\\\\\boxed{\mathsf{a_7=81}} \mathsf{a_1=\dfrac{1}{9}}\\\\\\\mathsf{a_7=\dfrac{1}{9}\cdot 3^{7-1}}\\\\\\\mathsf{a_7=\dfrac{1}{9}\cdot3^6}\\\\\\\mathsf{a_7=\dfrac{1}{9}\cdot 729}\\\\\boxed{\mathsf{a_7=81}}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba_1%3D%5Cdfrac%7B1%7D%7B9%7D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Ba_7%3D%5Cdfrac%7B1%7D%7B9%7D%5Ccdot+3%5E%7B7-1%7D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Ba_7%3D%5Cdfrac%7B1%7D%7B9%7D%5Ccdot3%5E6%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Ba_7%3D%5Cdfrac%7B1%7D%7B9%7D%5Ccdot+729%7D%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7Ba_7%3D81%7D%7D)
Dúvidas? comente
Onde q é a razão que é dada pela divisão de um termo pelo seu antecessor:
Achando o 7º termo:
Dúvidas? comente
Respondido por
1
Boa Tarde,
os dados são:
![\begin{cases}\mathsf{a_1= \dfrac{1}{9} }\\
\mathsf{q=(a_2)\div(a_1)= \dfrac{1}{3}\div \dfrac{1}{9} = \dfrac{1}{3}\cdot \dfrac{9}{1} =\dfrac{9}{3}=3 }\\
\mathsf{n=7~termos}\\
\mathsf{a_7=?}\end{cases} \begin{cases}\mathsf{a_1= \dfrac{1}{9} }\\
\mathsf{q=(a_2)\div(a_1)= \dfrac{1}{3}\div \dfrac{1}{9} = \dfrac{1}{3}\cdot \dfrac{9}{1} =\dfrac{9}{3}=3 }\\
\mathsf{n=7~termos}\\
\mathsf{a_7=?}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cmathsf%7Ba_1%3D+%5Cdfrac%7B1%7D%7B9%7D+%7D%5C%5C%0A%5Cmathsf%7Bq%3D%28a_2%29%5Cdiv%28a_1%29%3D+%5Cdfrac%7B1%7D%7B3%7D%5Cdiv+%5Cdfrac%7B1%7D%7B9%7D+%3D+%5Cdfrac%7B1%7D%7B3%7D%5Ccdot+%5Cdfrac%7B9%7D%7B1%7D++%3D%5Cdfrac%7B9%7D%7B3%7D%3D3+++%7D%5C%5C%0A%5Cmathsf%7Bn%3D7%7Etermos%7D%5C%5C%0A%5Cmathsf%7Ba_7%3D%3F%7D%5Cend%7Bcases%7D)
inserindo esses dados, na fórmula do termo geral:
![\mathsf{a_n=a_1\cdot q^{n-1}}\\\\
\mathsf{a_7= \dfrac{1}{9}\cdot3^{7-1} }\\\\
\mathsf{a_7= \dfrac{1}{3^2} \cdot3^6}\\\\
\mathsf{a_7=3^{-2}\cdot3^6}\\
\mathsf{a_7=3^4}\\\\
\huge\boxed{\mathsf{a_7=81}} \mathsf{a_n=a_1\cdot q^{n-1}}\\\\
\mathsf{a_7= \dfrac{1}{9}\cdot3^{7-1} }\\\\
\mathsf{a_7= \dfrac{1}{3^2} \cdot3^6}\\\\
\mathsf{a_7=3^{-2}\cdot3^6}\\
\mathsf{a_7=3^4}\\\\
\huge\boxed{\mathsf{a_7=81}}](https://tex.z-dn.net/?f=%5Cmathsf%7Ba_n%3Da_1%5Ccdot+q%5E%7Bn-1%7D%7D%5C%5C%5C%5C%0A%5Cmathsf%7Ba_7%3D+%5Cdfrac%7B1%7D%7B9%7D%5Ccdot3%5E%7B7-1%7D+%7D%5C%5C%5C%5C%0A%5Cmathsf%7Ba_7%3D+%5Cdfrac%7B1%7D%7B3%5E2%7D+%5Ccdot3%5E6%7D%5C%5C%5C%5C%0A%5Cmathsf%7Ba_7%3D3%5E%7B-2%7D%5Ccdot3%5E6%7D%5C%5C%0A%5Cmathsf%7Ba_7%3D3%5E4%7D%5C%5C%5C%5C%0A%5Chuge%5Cboxed%7B%5Cmathsf%7Ba_7%3D81%7D%7D)
tenha ótimos estudos ;D
os dados são:
inserindo esses dados, na fórmula do termo geral:
tenha ótimos estudos ;D
Perguntas interessantes
Matemática,
11 meses atrás
Biologia,
11 meses atrás
Matemática,
11 meses atrás
Administração,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás