Matemática, perguntado por karolcampos057, 4 meses atrás

Determinar a equação da reta s que contém o ponto P(3,4) e é paralela a reta (r) 2x + 3y = 0.

Soluções para a tarefa

Respondido por Kin07
2

De acordo com os cálculos e com os dados do enunciado, podemos afirmar que a equação procurada é:

\Large \displaystyle \text {  $  \mathsf{2x +3y - 18 = 0    } $ }

Duas retas distintas e não verticais \boldsymbol{ \textstyle \sf r ~e ~ s  }parealelas se, e somente se, seus coeficientes angulares são iguais \boldsymbol{ \textstyle \sf (\: m_r = m_s \:) }Vide a figura em anexo )

Dados fornecidos pelo enunciado:

\Large \displaystyle \text {  $  \mathsf{  \begin{cases}\sf s: y - y_0 = m \cdot (x - x_0)  \\\sf P\: ( 3,4 ) \\\sf r: 2x + +3y = 0  \end{cases}  } $ }

Para que s // r, é preciso que \textstyle \sf   \text  {$ \sf m_s = m_r   $ }, precisamos determinar o coeficientes de r e s, usando a equação na forma reduzida:

\Large \displaystyle \text {  $  \mathsf{ 2x +3y = 0   } $ }

\Large \displaystyle \text {  $  \mathsf{3y = - 2x    } $ }

\Large \displaystyle \text {  $  \mathsf{ y = -\:\dfrac{2}{3} \: x   } $ }

\Large \boldsymbol{  \displaystyle \sf m_s  = m_r  =  - \:\dfrac{2}{3}  }

A reta procura deve passar pelo ponto P ( 3, 4), usando a equação:

\Large \displaystyle \text {  $  \mathsf{ y - y_0 = m \cdot (x - x_0)    } $ }

\Large \displaystyle \text {  $  \mathsf{ y - 4 = -\:\dfrac{2}{3} \cdot ( x - 3)   } $ }

\Large \displaystyle \text {  $  \mathsf{ y - 4 =  -\: \dfrac{2}{3} \: x + \dfrac{6}{3}    } $ }

\Large \displaystyle \text {  $  \mathsf{ \dfrac{3y}{3} -  \dfrac{12}{3}  =  -\: \dfrac{2}{3} \: x + \dfrac{6}{3}    } $ }

\Large \displaystyle \text {  $  \mathsf{ 3y - 12 = -2x + 6   } $ }

\Large \displaystyle \text {  $  \mathsf{ 2x + 3y-12 - 6 = 0   } $ }

\Large \boldsymbol{  \displaystyle \sf 2x +3y  - 18 = 0 }

Finalmente, \boldsymbol{  \displaystyle \sf s:2x +3y -18 = 0  } é a equação da reta paralela a r traçada por P.

Mais conhecimento acesse:

https://brainly.com.br/tarefa/6249330

https://brainly.com.br/tarefa/40952993

Anexos:
Perguntas interessantes