desenvolva : (x2+y2)5
Soluções para a tarefa
Respondido por
1
Bom dia Gabriel
coeficiente do binômio de Newton
C(n,k) = n!/k!(n-k)!
C(5,0) = 5!/0!5! = 1
C(5,1) = 5!/1!4! = 5
C(5,2) = 5!/2!3! = 10
C(5,3) = 5!/3!2! = 10
C(5,4) = 5!/4!1! = 5
C(5,5) = 5!/5!0! = 1
(x² + y²)⁵ = x^10 + 5x^8y^2 + 10x^6y^4 + 10x^4y^6 + 5x^2y^8 + y^10
.
coeficiente do binômio de Newton
C(n,k) = n!/k!(n-k)!
C(5,0) = 5!/0!5! = 1
C(5,1) = 5!/1!4! = 5
C(5,2) = 5!/2!3! = 10
C(5,3) = 5!/3!2! = 10
C(5,4) = 5!/4!1! = 5
C(5,5) = 5!/5!0! = 1
(x² + y²)⁵ = x^10 + 5x^8y^2 + 10x^6y^4 + 10x^4y^6 + 5x^2y^8 + y^10
.
Perguntas interessantes