Matemática, perguntado por wandersonnet, 11 meses atrás

Deseja-se aproveitar um muro de 7 metros de comprimento como parte de um dos lados de um cercado que possui a forma retangular. Para completar o contorno do cercado, serão utilizados 35 metros de cerca.



A respeito deste caso, temos as afirmativas a seguir:



A maior área possível é dada quando a parte composta pelo muro é acrescida de 3,5 m de cerca.
Para encontrarmos a maior área possível é necessário encontrar os zeros da função polinomial do segundo grau que define a situação.
Quando acrescentamos 1,8 de cerca no lado composto pelo muro temos a maior área possível para o terreno.
A maior área possível do terreno é de aproximadamente 110,25 m2.

Soluções para a tarefa

Respondido por jalves26
18

O cercado será um retângulo onde um dos lados será uma parte do muro e os outros lados serão formados pela cerca.


Largura do cercado: x

Comprimento do cercado: y

Parte do cercado junto com o muro: y - 7


PERÍMETRO

2x + y + (y - 7) = 35

2x + 2y - 7 = 35

2x + 2y = 35 + 7

2x + 2y = 42

2(x + y) = 42

x + y = 42/2

x + y = 21 ⇒ y = 21 - x (I)


ÁREA

A = x.y (II)


Substituindo I em II, temos:

A = x.(21 - x)

A = - x² + 21x


Temos uma equação do 2° grau

- x² + 21x (a = -1 / b = 21)


Agora, calculemos o valor máximo de x. É só utilizarmos a fórmula do Xv.

Xv = - b / 2a

Xv = - 21 / 2(-1)

Xv = - 21 / - 2

Xv = 10,5


Então

x = 10,5 m


Agora, o valor de y.

y = 21 - x

y = 21 - 10,5

y = 10,5 m


A maior área possível é.

A = x.y

A = 10,5.10,5

A = 110,25 m²


Avaliando os itens.

1 - A maior área possível é dada quando a parte composta pelo muro é acrescida de 3,5 m de cerca.

>> VERDADEIRO - Se a parte composta pelo muro for acrescida em 3,5 m, ela alcançará 10,5 (7 + 3,5). Alcançando o valor máximo de y.


2 - Para encontrarmos a maior área possível é necessário encontrar os zeros da função polinomial do segundo grau que define a situação.

>> FALSO - Não necessariamente. Também poderíamos achar a área máxima pelo Yv.

Yv = - Δ / 4a

Yv = - 21² / 4(-1)

Yv = - 441 / - 4

Yv = 110,25


3 - Quando acrescentamos 1,8 de cerca no lado composto pelo muro temos a maior área possível para o terreno.

>> FALSO - Se a parte composta pelo muro for acrescida em 1,8 m, ela alcançará 8,8 (7 + 1,8). Não é o valor máximo de y.


4 - A maior área possível do terreno é de aproximadamente 110,25 m².

>> VERDADEIRO - A maior área possível é:

A = x.y

A = 10,5.10,5

A = 110,25 m²

Respondido por perseverance
3

Resposta:

(X) I, IV;

Explicação passo a passo:

Acertei

Perguntas interessantes