Descubra a área do quadrado maior da figura considerando o triângulo vermelho como a unidade das medidas de superfície Dica: o triângulo vermelho tem a mesma área que o triângulo laranja
Soluções para a tarefa
Resposta:
A área do triangulo maior é de quatro triângulos vermelhos.
Explicação passo-a-passo:
Já que o triângulo laranja e o triangulo vermelho são iguais e correspondem a metade de figura, então para preencher o total da figura eu preciso repetir a colocação dos triângulos, ficando com 2 laranjas e 2 vermelhos.
Como eles tem a mesma área então posso substituir 2 laranjas por 2 vermelhos e fico com o total de quatro triângulos vermelhos.
A área do quadrado será igual a de 4 triângulos vermelhos.
A área do quadrado
Área é uma medida de superfície, isso significa que estamos medindo o espaço ocupado por uma figura em 2 dimensões. Achar a área do quadrado em relação ao triângulo vermelho é dizer quantos triângulos vermelhos cabem dentro desse quadrado.
Sabendo que o triângulo vermelho tem mesma área do triângulo laranja devemos observar que juntos eles seguem a diagonal do quadrado. A diagonal liga vértices não consecutivos e divide o quadrado no meio. Dessa forma, para ocupar a outra metade seriam necessários outros dois triângulos vermelhos.
Concluímos assim, que serão necessários 4 triângulos vermelhos para ocupar a área desse quadrado.
Saiba mais a respeito de área do quadrado aqui: https://brainly.com.br/tarefa/34008311
#SPJ2