Descreva 4( quatro) descobertas geométricas atribuída por Tales.
Soluções para a tarefa
Respondido por
0
fatos geométricos cuja descoberta é atribuída a Tales são:
A demonstração de que os ângulos da base dos triângulos isósceles são iguais;
A demonstração do seguinte teorema: se dois triângulos tem dois ângulos e um lado respectivamente iguais, então são iguais;
A demonstração de que todo diâmetro divide um círculo em duas partes iguais;
A demonstração de que ao unir-se qualquer ponto de uma circunferência aos extremos de um diâmetro AB obtém-se um triângulo retângulo em C. Provavelmente, para demonstrar este teorema, Tales usou também o fato de que a soma dos ângulos de um triângulo é igual a dois ângulos retos;
Tales chamou a atenção de seus conterrâneos para o fato de que se duas retas se cortam, então os ângulos opostos pelo vértice são iguais.
A demonstração de que os ângulos da base dos triângulos isósceles são iguais;
A demonstração do seguinte teorema: se dois triângulos tem dois ângulos e um lado respectivamente iguais, então são iguais;
A demonstração de que todo diâmetro divide um círculo em duas partes iguais;
A demonstração de que ao unir-se qualquer ponto de uma circunferência aos extremos de um diâmetro AB obtém-se um triângulo retângulo em C. Provavelmente, para demonstrar este teorema, Tales usou também o fato de que a soma dos ângulos de um triângulo é igual a dois ângulos retos;
Tales chamou a atenção de seus conterrâneos para o fato de que se duas retas se cortam, então os ângulos opostos pelo vértice são iguais.
Respondido por
0
A demonstração de que os ângulos da base dos triângulos isósceles são iguais;
A demonstração do seguinte teorema: se dois triângulos tem dois ângulos e um lado respectivamente iguais, então são iguais;
A demonstração de que todo diâmetro divide um círculo em duas partes iguais;
A demonstração de que ao unir-se qualquer ponto de uma circunferência aos extremos de um diâmetro AB obtém-se um triângulo retângulo em C. Provavelmente, para demonstrar este teorema, Tales usou também o fato de que a soma dos ângulos de um triângulo é igual a dois ângulos retos;
Tales chamou a atenção de seus conterrâneos para o fato de que se duas retas se cortam, então os ângulos opostos pelo vértice são iguais.
A demonstração do seguinte teorema: se dois triângulos tem dois ângulos e um lado respectivamente iguais, então são iguais;
A demonstração de que todo diâmetro divide um círculo em duas partes iguais;
A demonstração de que ao unir-se qualquer ponto de uma circunferência aos extremos de um diâmetro AB obtém-se um triângulo retângulo em C. Provavelmente, para demonstrar este teorema, Tales usou também o fato de que a soma dos ângulos de um triângulo é igual a dois ângulos retos;
Tales chamou a atenção de seus conterrâneos para o fato de que se duas retas se cortam, então os ângulos opostos pelo vértice são iguais.
Perguntas interessantes