Matemática, perguntado por Nitoryu, 5 meses atrás

Desafio:

Calcule o valor de "x" na seguinte expressão:
  \mathsf{\frac{\mathsf{-\sqrt[2x]{n^{2(x-1)}*n^{2}}}}{(\frac{-n^{x^{2}}}{n^{x^{2} } }+1+\frac{18\pi^{2} }{9\pi})(-n)}*\sqrt{\frac{1+(\sqrt{x})^{2} }{3(10^{8}+3)+(10^{6}+111*10^{3})(2^{4} *5)+8880}} =\sqrt{\frac{2}{16 } }}
Se for possível aproximar o resultado para a menor casa decimal!!!

Soluções para a tarefa

Respondido por auditsys
16

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{\frac{\mathsf{-\sqrt[2x]{n^{2(x - 1)}*n^{2}}}}{(\frac{-n^{x^{2}}}{n^{x^{2}}} + 1+\frac{18\pi^{2}}{9\pi})(-n)}*\sqrt{\frac{1 + (\sqrt{x})^{2}}{3(10^{8} + 3)+(10^{6} + 111 * 10^{3})(2^{4}*5)+8880}} = \sqrt{\frac{2}{16}}}

\mathsf{\frac{\mathsf{-\sqrt[2x]{n^{(2x - 2)}*n^{2}}}}{(\frac{-n^{x^{2}}}{n^{x^{2}}} + 1+\frac{18\pi^{2}}{9\pi})(-n)}*\sqrt{\frac{1 + (\sqrt{x})^{2}}{3(10^{8} + 3)+(10^{6} + 111* 10^{3})(2^{4}*5)+8880}} = \sqrt{\frac{2}{16}}}

\mathsf{\frac{\mathsf{-\sqrt[2x]{n^{2x}.n^{-2}*n^{2}}}}{(\frac{-n^{x^{2}}}{n^{x^{2}}} + 1+\frac{18\pi^{2}}{9\pi})(-n)}*\sqrt{\frac{1 + (\sqrt{x})^{2}}{3(10^{8} + 3)+(10^{6} + 111 * 10^{3})(2^{4}*5)+8880}} = \sqrt{\frac{2}{16}}}

\mathsf{\frac{\mathsf{-n}}{(\frac{-n^{x^{2}}}{n^{x^{2}}} + 1+\frac{18\pi^{2}}{9\pi})(-n)}*\sqrt{\frac{1 + (\sqrt{x})^{2}}{3(10^{8} + 3)+(10^{6} + 111 * 10^{3})(2^{4}*5)+8880}} = \sqrt{\frac{2}{16}}}

\mathsf{\frac{\mathsf{-n}}{(-1 + 1+\frac{18\pi^{2}}{9\pi})(-n)}*\sqrt{\frac{1 + (\sqrt{x})^{2}}{3(10^{8} + 3)+(10^{6} + 111 * 10^{3})(2^{4}*5)+8880}} = \sqrt{\frac{2}{16}}}

\mathsf{\frac{9}{18\pi}*\sqrt{\frac{1 + (\sqrt{x})^{2}}{3(10^{8} + 3)+(10^{6} + 111 * 10^{3})(2^{4}*5)+8880}} = \sqrt{\frac{2}{16}}}

\mathsf{\frac{1}{2\pi}*\sqrt{\frac{1 + x}{3(10^{8} + 3)+(10^{6} + 111 * 10^{3})(2^{4}*5)+8880}} = \sqrt{\frac{2}{16}}}

\mathsf{\frac{1}{2\pi}*\sqrt{\frac{1 + x}{(300.000.009)+(1.111.000)(80)+8880}} = \sqrt{\frac{2}{16}}}

\mathsf{\frac{1}{2\pi}*\sqrt{\frac{1 + x}{(300.000.009)+(88.880.000)+8880}} = \sqrt{\frac{2}{16}}}

\mathsf{\frac{1}{2\pi}*\sqrt{\frac{1 + x}{388.888.889}} = \sqrt{\frac{2}{16}}}

\mathsf{\dfrac{1}{4\pi^2}*\dfrac{1 + x}{388.888.889} = \dfrac{1}{8}}

\mathsf{\dfrac{1 + x}{15.337.155.559,94} = \dfrac{1}{8}}

\mathsf{8 + 8x = 15.337.155.559,94}

\mathsf{8x = 15.337.155.551,94}

\boxed{\boxed{\mathsf{x = 1.917.144.444}}}

Perguntas interessantes