Matemática, perguntado por vittoramaral, 1 ano atrás

Derive y= log2 (3x - cos2x)

Soluções para a tarefa

Respondido por Alexandrepsluz
5
a resposta é esta aí
Anexos:
Respondido por acidbutter
4
\displaystyle \frac{d}{dx}\left(\log_{2}(3x-\cos(2x))\right)\implies \log_{2}(u)=\frac{\ln(u)}{\ln2}\implies \\\\\frac{d}{dx}\log_{2}(3x-\cos(2x))=\frac{d}{dx}\frac{\ln(3x-\cos(2x))}{\ln(2)}\implies \\\\\frac{d}{dx}=\left(\frac{1}{\ln2}\right)\cdot (\ln(u))'\cdot u'\cdot v'\implies u=3x-\cos(2x)\ v=2x\\\\\left(\frac{1}{\ln2}\right)\cdot \frac{1}{u}\cdot 3+\sin(2x)\cdot2=\boxed{\frac{3+2\sin(2x)}{\ln2(3x-\cos(2x))}}
Perguntas interessantes