derive e simplifique 2x+1/4(x^2+x+1)+3/8(2x+1+2*raiz de x^2+x+1)
Anexos:
![](https://pt-static.z-dn.net/files/d4c/5cc454b8ba5c0c1b1cddd82d719208f7.jpg)
avengercrawl:
Anexa uma imagem para podermos interpretar melhor quem está no numerador e quem está no denominador.
Soluções para a tarefa
Respondido por
1
Olá
![\displaystyle \mathsf{y= \frac{2x+1}{4}\cdot \sqrt{x^2+x+1}~+~ \frac{3}{8}\ell n(2x+1+2 \sqrt{x^2+x+1} ) } \displaystyle \mathsf{y= \frac{2x+1}{4}\cdot \sqrt{x^2+x+1}~+~ \frac{3}{8}\ell n(2x+1+2 \sqrt{x^2+x+1} ) }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7By%3D+%5Cfrac%7B2x%2B1%7D%7B4%7D%5Ccdot++%5Csqrt%7Bx%5E2%2Bx%2B1%7D%7E%2B%7E+%5Cfrac%7B3%7D%7B8%7D%5Cell+n%282x%2B1%2B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%29+++%7D)
Vamos derivar por partes, para deixar claro o que foi feito.
Então vamos derivar o primeiro termo.
![\displaystyle \mathsf{f= \frac{2x+1}{4}\cdot \sqrt{x^2+x+1} } \displaystyle \mathsf{f= \frac{2x+1}{4}\cdot \sqrt{x^2+x+1} }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7Bf%3D+%5Cfrac%7B2x%2B1%7D%7B4%7D%5Ccdot++%5Csqrt%7Bx%5E2%2Bx%2B1%7D+++%7D)
Temos que aplicar a regra do produto ... (f.g)' = f'g + fg'
Derivando
![\displaystyle \mathsf{f'= \frac{2}{4}\cdot \sqrt{x^2+x+1} ~+~ \frac{2x+1}{4}\cdot \left( \frac{2x+1}{2 \sqrt{x^2+x+1} } \right) }\\\\\\\mathsf{f'= \frac{2 \sqrt{x^2+x+1} }{4}~+~ \frac{(2x+1)\cdot (2x+1)}{4\cdot 2 \sqrt{x^2+x+1} } }\\\\\\\text{Expande os termos}\\\\\mathsf{f'=\frac{2 \sqrt{x^2+x+1} }{4}~+~ \frac{4x^2+4x+1}{8 \sqrt{x^2+x+1} } }\\\\\\\text{Faz o MMC}\\\\\\\mathsf{f'= \frac{16\cdot \left( \sqrt{x^2+x+1} \right)^2+4\codt (4x^2+4x+1)}{4\cdot 8\sqrt{x^2+x+1} } }\\\\\\\text{Cancela a raiz } \displaystyle \mathsf{f'= \frac{2}{4}\cdot \sqrt{x^2+x+1} ~+~ \frac{2x+1}{4}\cdot \left( \frac{2x+1}{2 \sqrt{x^2+x+1} } \right) }\\\\\\\mathsf{f'= \frac{2 \sqrt{x^2+x+1} }{4}~+~ \frac{(2x+1)\cdot (2x+1)}{4\cdot 2 \sqrt{x^2+x+1} } }\\\\\\\text{Expande os termos}\\\\\mathsf{f'=\frac{2 \sqrt{x^2+x+1} }{4}~+~ \frac{4x^2+4x+1}{8 \sqrt{x^2+x+1} } }\\\\\\\text{Faz o MMC}\\\\\\\mathsf{f'= \frac{16\cdot \left( \sqrt{x^2+x+1} \right)^2+4\codt (4x^2+4x+1)}{4\cdot 8\sqrt{x^2+x+1} } }\\\\\\\text{Cancela a raiz }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7Bf%27%3D+%5Cfrac%7B2%7D%7B4%7D%5Ccdot++%5Csqrt%7Bx%5E2%2Bx%2B1%7D+++%7E%2B%7E+%5Cfrac%7B2x%2B1%7D%7B4%7D%5Ccdot+%5Cleft%28+%5Cfrac%7B2x%2B1%7D%7B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%5Cright%29+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%27%3D+%5Cfrac%7B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D%7B4%7D%7E%2B%7E+%5Cfrac%7B%282x%2B1%29%5Ccdot+%282x%2B1%29%7D%7B4%5Ccdot+2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D++%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BExpande+os+termos%7D%5C%5C%5C%5C%5Cmathsf%7Bf%27%3D%5Cfrac%7B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D%7B4%7D%7E%2B%7E+%5Cfrac%7B4x%5E2%2B4x%2B1%7D%7B8+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BFaz+o+MMC%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%27%3D+%5Cfrac%7B16%5Ccdot+%5Cleft%28+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%5Cright%29%5E2%2B4%5Ccodt+%284x%5E2%2B4x%2B1%29%7D%7B4%5Ccdot++8%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BCancela+a+raiz+%7D)
![\displaystyle \mathsf{f'= \frac{16\cdot (x^2+x+1)~+~4(4x^2+4x+1)}{32 \sqrt{x^2+x+1} } }\\\\\\\text{Aplica a distributiva}\\\\\\\mathsf{f'= \frac{16x^2+16x+16+16x^2+16x+4}{32 \sqrt{x^2+x+1} } }\\\\\\\text{Agrupa os termos em comum}\\\\\\\mathsf{f'= \frac{32x^2+32x+20}{32 \sqrt{x^2+x+1} } }\\\\\\\text{Poe o 4 em evidencia, para simplificarmos}\\\\\\\mathsf{f'= \frac{\diagup\!\!\!\!4\cdot (8x^2+8x+5)}{\diagup\!\!\!\!\!\!32 \sqrt{x^2+x+1} } }\\\\\\\boxed{\mathsf{f'= \frac{8x^2+8x+5}{8 \sqrt{x^2+x+1} } }} \displaystyle \mathsf{f'= \frac{16\cdot (x^2+x+1)~+~4(4x^2+4x+1)}{32 \sqrt{x^2+x+1} } }\\\\\\\text{Aplica a distributiva}\\\\\\\mathsf{f'= \frac{16x^2+16x+16+16x^2+16x+4}{32 \sqrt{x^2+x+1} } }\\\\\\\text{Agrupa os termos em comum}\\\\\\\mathsf{f'= \frac{32x^2+32x+20}{32 \sqrt{x^2+x+1} } }\\\\\\\text{Poe o 4 em evidencia, para simplificarmos}\\\\\\\mathsf{f'= \frac{\diagup\!\!\!\!4\cdot (8x^2+8x+5)}{\diagup\!\!\!\!\!\!32 \sqrt{x^2+x+1} } }\\\\\\\boxed{\mathsf{f'= \frac{8x^2+8x+5}{8 \sqrt{x^2+x+1} } }}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7Bf%27%3D+%5Cfrac%7B16%5Ccdot+%28x%5E2%2Bx%2B1%29%7E%2B%7E4%284x%5E2%2B4x%2B1%29%7D%7B32+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BAplica+a+distributiva%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%27%3D+%5Cfrac%7B16x%5E2%2B16x%2B16%2B16x%5E2%2B16x%2B4%7D%7B32+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BAgrupa+os+termos+em+comum%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%27%3D+%5Cfrac%7B32x%5E2%2B32x%2B20%7D%7B32+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BPoe+o+4+em+evidencia%2C+para+simplificarmos%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bf%27%3D+%5Cfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%214%5Ccdot+%288x%5E2%2B8x%2B5%29%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21%5C%2132+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7Bf%27%3D+%5Cfrac%7B8x%5E2%2B8x%2B5%7D%7B8+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%7D)
Derivamos o primeiro termo. Então vamos derivar o segundo.
![\displaystyle\mathsf{g= \frac{3}{8}\ell n(2x+1+2 \sqrt{x^2+x+1} ) }\\\\\\\\\text{Lembrando que a derivada de ln e: } \frac{u'}{u} \\\\\\\mathsf{g'= \frac{3}{8}\cdot \left( \frac{2+ \diagup\!\!\!\!2\cdot \frac{2x+1}{\diagup\!\!\!\!2 \sqrt{x^2+x+1} } }{2x+1+2 \sqrt{x^2+x+1} } \right) }\\\\\\\mathsf{g'= \frac{3}{8}\left( \frac{2+ \frac{2x+1}{ \sqrt{x^2+x+1} } }{2x+1+2 \sqrt{x^2+x+1} } \right) }\\\\\\\text{Faz o MMC} \displaystyle\mathsf{g= \frac{3}{8}\ell n(2x+1+2 \sqrt{x^2+x+1} ) }\\\\\\\\\text{Lembrando que a derivada de ln e: } \frac{u'}{u} \\\\\\\mathsf{g'= \frac{3}{8}\cdot \left( \frac{2+ \diagup\!\!\!\!2\cdot \frac{2x+1}{\diagup\!\!\!\!2 \sqrt{x^2+x+1} } }{2x+1+2 \sqrt{x^2+x+1} } \right) }\\\\\\\mathsf{g'= \frac{3}{8}\left( \frac{2+ \frac{2x+1}{ \sqrt{x^2+x+1} } }{2x+1+2 \sqrt{x^2+x+1} } \right) }\\\\\\\text{Faz o MMC}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cmathsf%7Bg%3D+%5Cfrac%7B3%7D%7B8%7D%5Cell+n%282x%2B1%2B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%29+%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Ctext%7BLembrando+que+a+derivada+de+ln+e%3A+%7D+%5Cfrac%7Bu%27%7D%7Bu%7D+%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bg%27%3D+%5Cfrac%7B3%7D%7B8%7D%5Ccdot+%5Cleft%28+%5Cfrac%7B2%2B+%5Cdiagup%5C%21%5C%21%5C%21%5C%212%5Ccdot+%5Cfrac%7B2x%2B1%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%212+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%7B2x%2B1%2B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%5Cright%29+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bg%27%3D+%5Cfrac%7B3%7D%7B8%7D%5Cleft%28+%5Cfrac%7B2%2B+%5Cfrac%7B2x%2B1%7D%7B++%5Csqrt%7Bx%5E2%2Bx%2B1%7D++%7D+%7D%7B2x%2B1%2B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%5Cright%29+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BFaz+o+MMC%7D)
![\displaystyle \mathsf{g'= \frac{3}{8}\left( \frac{ \frac{2 \sqrt{x^2+x+1}+2x+1 }{ \sqrt{x^2+x+1} } }{2x+1+2 \sqrt{x^2+x+1} } \right) }\\\\\\\text{Divisao de fracoes, multiplica a primeira pelo inverso da segunda}\\\\\\\mathsf{g'= \frac{3}{8}\left( \frac{2 \sqrt{x^2+x+1}+2x+1 }{ \sqrt{x^2+x+1} }~\cdot ~ \frac{1}{2 \sqrt{x^2+x+1}+2x+1} \right) }\\\\\\\mathsf{Simplifica}\\\\\\\mathsf{g'= \frac{3}{8}\left( \frac{1}{ \sqrt{x^2+x+1} \right)} }\\\\\\\boxed{\mathsf{g'= \frac{3}{8 \sqrt{x^2+x+1} } }} \displaystyle \mathsf{g'= \frac{3}{8}\left( \frac{ \frac{2 \sqrt{x^2+x+1}+2x+1 }{ \sqrt{x^2+x+1} } }{2x+1+2 \sqrt{x^2+x+1} } \right) }\\\\\\\text{Divisao de fracoes, multiplica a primeira pelo inverso da segunda}\\\\\\\mathsf{g'= \frac{3}{8}\left( \frac{2 \sqrt{x^2+x+1}+2x+1 }{ \sqrt{x^2+x+1} }~\cdot ~ \frac{1}{2 \sqrt{x^2+x+1}+2x+1} \right) }\\\\\\\mathsf{Simplifica}\\\\\\\mathsf{g'= \frac{3}{8}\left( \frac{1}{ \sqrt{x^2+x+1} \right)} }\\\\\\\boxed{\mathsf{g'= \frac{3}{8 \sqrt{x^2+x+1} } }}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7Bg%27%3D+%5Cfrac%7B3%7D%7B8%7D%5Cleft%28++%5Cfrac%7B+%5Cfrac%7B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D%2B2x%2B1+%7D%7B+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%7B2x%2B1%2B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D++%5Cright%29+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BDivisao+de+fracoes%2C+multiplica+a+primeira+pelo+inverso+da+segunda%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bg%27%3D+%5Cfrac%7B3%7D%7B8%7D%5Cleft%28+%5Cfrac%7B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D%2B2x%2B1+%7D%7B+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D%7E%5Ccdot+%7E+%5Cfrac%7B1%7D%7B2+%5Csqrt%7Bx%5E2%2Bx%2B1%7D%2B2x%2B1%7D++%5Cright%29+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7BSimplifica%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7Bg%27%3D+%5Cfrac%7B3%7D%7B8%7D%5Cleft%28+%5Cfrac%7B1%7D%7B+%5Csqrt%7Bx%5E2%2Bx%2B1%7D++%5Cright%29%7D+%7D%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7Bg%27%3D+%5Cfrac%7B3%7D%7B8+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%7D)
Agora que derivamos o segundo termo, juntamos tudo.
![\displaystyle \mathsf{y'= \frac{8x^2+8x+5}{8 \sqrt{x^2+x+1} } ~+~ \frac{3}{8 \sqrt{x^2+x+1} } }\\\\\\\text{faz o MMC, os denominadores sao iguais :)}\\\\\\\mathsf{y'= \frac{8x^2+8x+5+3}{8 \sqrt{x^2+x+1} } }\\\\\\\mathsf{y'= \frac{8x^2+8x+8}{8 \sqrt{x^2+x+1} } }\\\\\\\text{Poe o 8 em evidencia}\\\\\\\mathsf{y'= \frac{\diagup\!\!\!\!8(x^2+x+1)}{\diagup\!\!\!\!8 \sqrt{x^2+x+1} } }\\\\\\\mathsf{y'= \frac{x^2+x+1}{ \sqrt{x^2+x+1} } } \displaystyle \mathsf{y'= \frac{8x^2+8x+5}{8 \sqrt{x^2+x+1} } ~+~ \frac{3}{8 \sqrt{x^2+x+1} } }\\\\\\\text{faz o MMC, os denominadores sao iguais :)}\\\\\\\mathsf{y'= \frac{8x^2+8x+5+3}{8 \sqrt{x^2+x+1} } }\\\\\\\mathsf{y'= \frac{8x^2+8x+8}{8 \sqrt{x^2+x+1} } }\\\\\\\text{Poe o 8 em evidencia}\\\\\\\mathsf{y'= \frac{\diagup\!\!\!\!8(x^2+x+1)}{\diagup\!\!\!\!8 \sqrt{x^2+x+1} } }\\\\\\\mathsf{y'= \frac{x^2+x+1}{ \sqrt{x^2+x+1} } }](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7By%27%3D+%5Cfrac%7B8x%5E2%2B8x%2B5%7D%7B8+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7E%2B%7E+%5Cfrac%7B3%7D%7B8+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7Bfaz+o+MMC%2C+os+denominadores+sao+iguais+%3A%29%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%27%3D+%5Cfrac%7B8x%5E2%2B8x%2B5%2B3%7D%7B8+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%27%3D+%5Cfrac%7B8x%5E2%2B8x%2B8%7D%7B8+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BPoe+o+8+em+evidencia%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%27%3D+%5Cfrac%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%218%28x%5E2%2Bx%2B1%29%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%218+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%27%3D+%5Cfrac%7Bx%5E2%2Bx%2B1%7D%7B+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D)
Racionaliza
![\displaystyle \mathsf{y'= \frac{x^2+x+1}{ \sqrt{x^2+x+1} } ~\cdot ~ \frac{\sqrt{x^2+x+1} }{\sqrt{x^2+x+1} } }\\\\\\\mathsf{y'= \frac{(x^2+x+1)\cdot \sqrt{x^2+x+1} }{ (\sqrt{x^2+x+1})^2 } }\\\\\\\mathsf{y'= \frac{(x^2+x+1)\cdot \sqrt{x^2+x+1} }{ x^2+x+1 }}\\\\\\\text{Simplifica}\\\\\\\\\boxed{\boxed{\mathsf{y'= \sqrt{x^2+x+1} }}} \displaystyle \mathsf{y'= \frac{x^2+x+1}{ \sqrt{x^2+x+1} } ~\cdot ~ \frac{\sqrt{x^2+x+1} }{\sqrt{x^2+x+1} } }\\\\\\\mathsf{y'= \frac{(x^2+x+1)\cdot \sqrt{x^2+x+1} }{ (\sqrt{x^2+x+1})^2 } }\\\\\\\mathsf{y'= \frac{(x^2+x+1)\cdot \sqrt{x^2+x+1} }{ x^2+x+1 }}\\\\\\\text{Simplifica}\\\\\\\\\boxed{\boxed{\mathsf{y'= \sqrt{x^2+x+1} }}}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cmathsf%7By%27%3D+%5Cfrac%7Bx%5E2%2Bx%2B1%7D%7B+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7E%5Ccdot+%7E+%5Cfrac%7B%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D%7B%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%27%3D+%5Cfrac%7B%28x%5E2%2Bx%2B1%29%5Ccdot++%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D%7B+%28%5Csqrt%7Bx%5E2%2Bx%2B1%7D%29%5E2+%7D+%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7By%27%3D+%5Cfrac%7B%28x%5E2%2Bx%2B1%29%5Ccdot++%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D%7B+x%5E2%2Bx%2B1+%7D%7D%5C%5C%5C%5C%5C%5C%5Ctext%7BSimplifica%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7By%27%3D+%5Csqrt%7Bx%5E2%2Bx%2B1%7D+%7D%7D%7D)
Dúvidas? Deixe nos comentários.
![\mathsf{AvengerCrawl\left(\smile \!\!\!\!\!\!\!^{'~'}\right)} \mathsf{AvengerCrawl\left(\smile \!\!\!\!\!\!\!^{'~'}\right)}](https://tex.z-dn.net/?f=%5Cmathsf%7BAvengerCrawl%5Cleft%28%5Csmile+%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5E%7B%27%7E%27%7D%5Cright%29%7D)
Vamos derivar por partes, para deixar claro o que foi feito.
Então vamos derivar o primeiro termo.
Temos que aplicar a regra do produto ... (f.g)' = f'g + fg'
Derivando
Derivamos o primeiro termo. Então vamos derivar o segundo.
Agora que derivamos o segundo termo, juntamos tudo.
Racionaliza
Dúvidas? Deixe nos comentários.
Perguntas interessantes
Geografia,
11 meses atrás
Português,
11 meses atrás
Informática,
11 meses atrás
Saúde,
1 ano atrás
Música,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
História,
1 ano atrás