Matemática, perguntado por renanoliveira51, 1 ano atrás

Derive a função:
a)f(t)=1/2t^6-3t^4+T

b)f(t)=raiz de t - 1/raiz de t

Anexos:

Lukyo: • Na letra a, qual é o denominador completo?

• Na letra b, o que está dentro da raiz e o que está fora da raiz quadrada?
renanoliveira51: editei e coloquei a imagem para auxilio
renanoliveira51: entendi
renanoliveira51: vou tentar fazer o resto

Soluções para a tarefa

Respondido por Lukyo
2
Regras de derivação utilizadas:

Sendo \mathtt{u} e \mathtt{v} funções deriváveis de \mathtt{t}, e \mathtt{a} e \mathtt{b} constantes reais, vale que

•   \mathtt{\dfrac{d}{dt}(au+bv)=a\dfrac{du}{dt}+b\dfrac{dv}{dt}}

(linearidade)

____________

Regra da derivada da função potência:

•   \mathtt{\dfrac{d}{dt}(t^n)=nt^{n-1}}

____________

a)  \mathtt{f(t) =\dfrac{1}{2}t^6-3t^4+t}

Derivando,

\mathtt{\dfrac{df}{dt}=\dfrac{d}{dt}\!\left(\dfrac{1}{2}t^6-3t^4+t \right )}\\\\\\ \mathtt{\dfrac{df}{dt}=\dfrac{d}{dt}\!\left(\dfrac{1}{2}t^6\right)-\dfrac{d}{dt}(3t^4)+\dfrac{d}{dt}(t)}\\\\\\ \mathtt{\dfrac{df}{dt}=\dfrac{1}{2}\dfrac{d}{dt}(t^6)-3\dfrac{d}{dt}(t^4)+\dfrac{d}{dt}(t^1)}\\\\\\ \mathtt{\dfrac{df}{dt}=\dfrac{1}{2}\cdot 6t^{6-1}-3\cdot 4t^{4-1}+1t^{1-1}}\\\\\\ \mathtt{\dfrac{df}{dt}=\dfrac{1}{2}\cdot 6t^5-3\cdot 4t^3+1t^0}\\\\\\ \boxed{\begin{array}{c}\mathtt{\dfrac{df}{dt}=3t^5-12t^3+1} \end{array}}

_________

b) \mathtt{f(t)=\sqrt{t}-\dfrac{1}{\sqrt{t}}}

\mathtt{f(t)=t^{\frac{1}{2}}-\dfrac{1}{t^{\frac{1}{2}}}}\\\\\\ \mathtt{f(t)=t^{\frac{1}{2}}-t^{-\frac{1}{2}}}


Derivando,

\mathtt{\dfrac{df}{dt}=\dfrac{d}{dt}(t^{\frac{1}{2}}-t^{-\frac{1}{2}})}\\\\\\ \mathtt{\dfrac{df}{dt}=\dfrac{d}{dt}(t^{\frac{1}{2}})-\dfrac{d}{dt}(t^{-\frac{1}{2}})}\\\\\\ \mathtt{\dfrac{df}{dt}=\dfrac{1}{2}t^{\frac{1}{2}-1}-\left(-\dfrac{1}{2}\right)\!t^{-\frac{1}{2}-1}}\\\\\\ \mathtt{\dfrac{df}{dt}=\dfrac{1}{2}t^{-\frac{1}{2}}+\dfrac{1}{2}t^{-\frac{3}{2}}}\\\\\\ \mathtt{\dfrac{df}{dt}=\dfrac{1}{2}\cdot\dfrac{1}{t^{\frac{1}{2}}}+\dfrac{1}{2}\cdot \dfrac{1}{t^{\frac{3}{2}}}}

\mathtt{\dfrac{df}{dt}=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{t}}+\dfrac{1}{2}\cdot \dfrac{1}{\sqrt{t^3}}}\\\\\\ \boxed{\begin{array}{c}\mathtt{\dfrac{df}{dt}=\dfrac{1}{2\sqrt{t}}+\dfrac{1}{2\sqrt{t^3}}} \end{array}}


Dúvidas? Comente.


Bons estudos! :-)

Anexos:
Perguntas interessantes