Matemática, perguntado por anaclaudiaclucia, 1 ano atrás

Derivadas através metodo de limites helpeeee

f(x) = 3/x
a=3

Soluções para a tarefa

Respondido por Lukyo
0
Calcular a derivada da função

f(x)=\dfrac{3}{x}

no ponto a=3:

_____________

f'(a)=\underset{x\to a}{\mathrm{\ell im}}~\dfrac{f(x)-f(a)}{x-a}

( se o limite existir )


Para a=3, temos

f'(3)=\underset{x\to 3}{\mathrm{\ell im}}~\dfrac{f(x)-f(3)}{x-3}\\\\\\ =\underset{x\to 3}{\mathrm{\ell im}}~\dfrac{\frac{3}{x}-\frac{3}{3}}{x-3}\\\\\\ =\underset{x\to 3}{\mathrm{\ell im}}~\dfrac{\frac{3}{x}-1}{x-3}\\\\\\ =\underset{x\to 3}{\mathrm{\ell im}}~\dfrac{\frac{3}{x}-1}{x-3}\cdot \dfrac{x}{x}

=\underset{x\to 3}{\mathrm{\ell im}}~\dfrac{\left(\frac{3}{x}-1 \right )\cdot x}{(x-3)\cdot x}\\\\\\ =\underset{x\to 3}{\mathrm{\ell im}}~\dfrac{3-x}{(x-3)\cdot x}\\\\\\ =\underset{x\to 3}{\mathrm{\ell im}}~\dfrac{(x-3)\cdot (-1)}{(x-3)\cdot x}\\\\\\ =\underset{x\to 3}{\mathrm{\ell im}}~\dfrac{-1}{x}\\\\\\ =-\dfrac{1}{3}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6109463
Perguntas interessantes