Matemática, perguntado por tiagooguerra, 1 ano atrás

derivada parcial de f(x,y) = xe^(x+y)

Soluções para a tarefa

Respondido por Usuário anônimo
1
Tirar uma derivada parcial eh como tirar uma derivada normal (nao implicita) a gente finge que a outra variavel eh uma constante:

f(x,y)=xe^{x+y}\\\\f_x=\dfrac{d(x)}{dx}e^{x+y}+\dfrac{d(e^{x+y})}{dx}x=e^{x+y}+xe^{x+y}\\\\f_y=xe^{x+y}

tiagooguerra: Ainda nao entendi. Eu nao sei por onde começo a fazer a derivada em relação a x
Usuário anônimo: como vc normalmente faz derivada?quando nao tem y?
tiagooguerra: Voce fez a regra do produto ?
Usuário anônimo: sim
Usuário anônimo: exatamente
Usuário anônimo: no caso ali eu finge que y era uma constante, como se eu tivesse derivando e^(x+1) e pronto
Perguntas interessantes