Matemática, perguntado por brunosbatista0p76zu0, 1 ano atrás

derivada de 1/(5x-3) no ponto x = 1

Soluções para a tarefa

Respondido por marinadecarvalho
0
1/(5x - 3) , x = 1
1/(5×1 - 3) = 1/(5-3) = 1/2

Espero ter ajudado;
Respondido por CyberKirito
0

Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador https://brainly.com.br/tarefa/16352811

                                                                                                                               

Derivada no ponto

\huge\boxed{\boxed{\boxed{\boxed{\displaystyle\sf f'(a)=\lim_{x \to a}\dfrac{f(x)-f(a)}{x-a}}}}}

\sf f(x)=\dfrac{1}{5x-3}\\\sf f(1)=\dfrac{1}{5\cdot1-3}=\dfrac{1}{5-3}=\dfrac{1}{2}\\\displaystyle\sf f'(1)=\lim_{x \to 1}\dfrac{\frac{1}{5x-3}-\frac{1}{2}}{x-1}\\\displaystyle\sf f'(1)=\lim_{x \to 1}\dfrac{\frac{2-1[5x-3]}{2\cdot(5x-3)}}{x-1}

\displaystyle\sf f'(1)=\lim_{x \to 1}\dfrac{\frac{2-5x+3}{2\cdot(5x-3)}}{x-1}\\\displaystyle\sf f'(1)=\lim_{x \to 1}\dfrac{1}{(x-1)}\cdot\dfrac{-5x+5}{2\cdot(5x-3)}\\\displaystyle\sf f'(1)=\lim_{x \to 1}\dfrac{1}{\diagup\!\!\!\!\!(x-\diagup\!\!\!\!1)}\cdot\dfrac{-5\cdot\diagup\!\!\!\!\!(x-\diagup\!\!\!\!1)}{2\cdot(5x-3)}\\\displaystyle\sf f'(1)=-\dfrac{5}{2}\lim_{x \to 1}\dfrac{1}{5x-3}\\\displaystyle\sf f'(1)=-\dfrac{5}{2}\cdot\dfrac{1}{(5\cdot1-3)}\\\sf f'(1)=-\dfrac{5}{2}\cdot\dfrac{1}{2}

\huge\boxed{\boxed{\boxed{\boxed{\sf f'(1)=-\dfrac{5}{4}\checkmark}}}}

Perguntas interessantes