dentre os números inteiros quadrados perfeitos que estão entre 1 e 2000, qual é o maior?
Soluções para a tarefa
resposta 1
Existem alguns padrões na Matemática que nos despertam a curiosidade e podem estar relacionados com alguma sequência numérica. Quando vemos números enfileirados, logo nos questionamos sobre o seu padrão de formação. Veja os números a seguir:
1, 4, 9, 16, 25, 36, 49, 64, 81, 100 …
Qual deve ser a lógica dessa sequência? A resposta está no número quadrado perfeito. Entenda que um número será quadrado perfeito quando ele for um número inteiro e o seu quadrado gerar outro número inteiro positivo. Veja:
12 = 1 . 1 = 1
22 = 2. 2 = 4
32 = 3 . 3 = 9
42 = 4 . 4 = 16
52 = 5 . 5 = 25
62 = 6 . 6 = 36
72 = 7 . 7 = 49
82 = 8 . 8 = 64
92 = 9 . 9 = 81
102 = 10 . 10 = 100
.
.
.
Após observar esses cálculos, é possível determinar um padrão de formação, que é dado por:
n2 = n . n = a
n2 = a
(n2) é o número inteiro positivo;
(n . n) é o produto de termos numéricos idênticos, que são positivos;
(a) é o número quadrado perfeito.
Exitem algumas regras práticas que ajudam a identificar os números que são quadrados perfeitos.
Primeira Regra: Somente o número quadrado perfeito possui raiz quadrada exata.
Exemplos:
Veja o cálculo da raiz quadrada dos números a seguir:
Segunda Regra: Quando o número é quadrado perfeito, ele não possui como último algarismo os seguintes números: 2, 3, 7 e 8.
1, 4, 9, 16, 25, 36, 49, 64, 81, 100 …
12 = 1 . 1 = 1
22 = 2. 2 = 4
32 = 3 . 3 = 9
42 = 4 . 4 = 10
52 = 5 . 5 = 25
62 = 6 . 6 = 36
72 = 7 . 7 = 49
82 = 8 . 8 = 64
92 = 9 . 9 = 81
102 = 10 . 10 = 100