Demonstre usando do princípio da indução finita, que:
![\large\begin{array}{l}\mathsf{1^3+2^3+3^3+...+n^3=}\begin{bmatrix}\mathsf{\dfrac{n(n+1)}{2}}}\end{bmatrix}^\mathsf{2},~~\mathsf{\forall~n~\in~\mathbb N*}\end{array} \large\begin{array}{l}\mathsf{1^3+2^3+3^3+...+n^3=}\begin{bmatrix}\mathsf{\dfrac{n(n+1)}{2}}}\end{bmatrix}^\mathsf{2},~~\mathsf{\forall~n~\in~\mathbb N*}\end{array}](https://tex.z-dn.net/?f=%5Clarge%5Cbegin%7Barray%7D%7Bl%7D%5Cmathsf%7B1%5E3%2B2%5E3%2B3%5E3%2B...%2Bn%5E3%3D%7D%5Cbegin%7Bbmatrix%7D%5Cmathsf%7B%5Cdfrac%7Bn%28n%2B1%29%7D%7B2%7D%7D%7D%5Cend%7Bbmatrix%7D%5E%5Cmathsf%7B2%7D%2C%7E%7E%5Cmathsf%7B%5Cforall%7En%7E%5Cin%7E%5Cmathbb+N%2A%7D%5Cend%7Barray%7D)
Soluções para a tarefa
Respondido por
2
Devemos mostrar, pelo Princípio da Indução Finita, que
![\displaystyle\sum\limits_{i=1}^{n}i^{3}=\bigg[\dfrac{n(n+1)}{2}\bigg]^{2}=\dfrac{n^{2}(n+1)^{2}}{4}~~~(\star)~~~~~~~~~\forall\,n\ge1 \displaystyle\sum\limits_{i=1}^{n}i^{3}=\bigg[\dfrac{n(n+1)}{2}\bigg]^{2}=\dfrac{n^{2}(n+1)^{2}}{4}~~~(\star)~~~~~~~~~\forall\,n\ge1](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bn%7Di%5E%7B3%7D%3D%5Cbigg%5B%5Cdfrac%7Bn%28n%2B1%29%7D%7B2%7D%5Cbigg%5D%5E%7B2%7D%3D%5Cdfrac%7Bn%5E%7B2%7D%28n%2B1%29%5E%7B2%7D%7D%7B4%7D%7E%7E%7E%28%5Cstar%29%7E%7E%7E%7E%7E%7E%7E%7E%7E%5Cforall%5C%2Cn%5Cge1)
Para isso, verificaremos a validade da igualdade para
:
![\displaystyle\sum\limits_{i=1}^{1}i^{3}=1^{3}=1=\dfrac{1\cdot4}{4}=\dfrac{1^{2}\cdot2^{2}}{4}=\dfrac{\mathbf{1}^{2}\cdot(\mathbf{1}+1)^{2}}{4}~~(\checkmark) \displaystyle\sum\limits_{i=1}^{1}i^{3}=1^{3}=1=\dfrac{1\cdot4}{4}=\dfrac{1^{2}\cdot2^{2}}{4}=\dfrac{\mathbf{1}^{2}\cdot(\mathbf{1}+1)^{2}}{4}~~(\checkmark)](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum%5Climits_%7Bi%3D1%7D%5E%7B1%7Di%5E%7B3%7D%3D1%5E%7B3%7D%3D1%3D%5Cdfrac%7B1%5Ccdot4%7D%7B4%7D%3D%5Cdfrac%7B1%5E%7B2%7D%5Ccdot2%5E%7B2%7D%7D%7B4%7D%3D%5Cdfrac%7B%5Cmathbf%7B1%7D%5E%7B2%7D%5Ccdot%28%5Cmathbf%7B1%7D%2B1%29%5E%7B2%7D%7D%7B4%7D%7E%7E%28%5Ccheckmark%29)
Assumiremos, por hipótese de indução, que
vale para
, isto é,
![\displaystyle\sum\limits_{i=1}^{k}i^{3}=1^{3}+...+\mathbf{k}^{3}=\dfrac{\mathbf{k}^{2}\cdot(\mathbf{k}+1)^{2}}{4} \displaystyle\sum\limits_{i=1}^{k}i^{3}=1^{3}+...+\mathbf{k}^{3}=\dfrac{\mathbf{k}^{2}\cdot(\mathbf{k}+1)^{2}}{4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bk%7Di%5E%7B3%7D%3D1%5E%7B3%7D%2B...%2B%5Cmathbf%7Bk%7D%5E%7B3%7D%3D%5Cdfrac%7B%5Cmathbf%7Bk%7D%5E%7B2%7D%5Ccdot%28%5Cmathbf%7Bk%7D%2B1%29%5E%7B2%7D%7D%7B4%7D)
Agora, temos que mostrar que
também vale para ![n=k+1 n=k+1](https://tex.z-dn.net/?f=n%3Dk%2B1)
Temos, por hipótese, que
![\displaystyle\sum\limits_{i=1}^{k}i^{3}=\dfrac{k^{2}(k+1)^{2}}{4} \displaystyle\sum\limits_{i=1}^{k}i^{3}=\dfrac{k^{2}(k+1)^{2}}{4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bk%7Di%5E%7B3%7D%3D%5Cdfrac%7Bk%5E%7B2%7D%28k%2B1%29%5E%7B2%7D%7D%7B4%7D)
Adicionando
aos dois lados da igualdade:
![\displaystyle\sum\limits_{i=1}^{k}i^{3}\,\,+\,\,(k+1)^{3}=\dfrac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}\\\\\\\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4} \displaystyle\sum\limits_{i=1}^{k}i^{3}\,\,+\,\,(k+1)^{3}=\dfrac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}\\\\\\\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bk%7Di%5E%7B3%7D%5C%2C%5C%2C%2B%5C%2C%5C%2C%28k%2B1%29%5E%7B3%7D%3D%5Cdfrac%7Bk%5E%7B2%7D%28k%2B1%29%5E%7B2%7D%7D%7B4%7D%2B%28k%2B1%29%5E%7B3%7D%5C%5C%5C%5C%5C%5C%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bk%2B1%7Di%5E%7B3%7D%3D%5Cdfrac%7Bk%5E%7B2%7D%28k%2B1%29%5E%7B2%7D%2B4%28k%2B1%29%5E%7B3%7D%7D%7B4%7D)
Colocando
em evidência no numerador:
![\displaystyle\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(k+1)^{2}\cdot(k^{2}+4[k+1]^{1})}{4}\\\\\\\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(\mathbf{k+1})^{2}(k^{2}+4k+4)}{4}\\\\\\\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(\mathbf{k+1})^{2}(k^{2}+2\cdot k\cdot2+2^{2})}{4} \displaystyle\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(k+1)^{2}\cdot(k^{2}+4[k+1]^{1})}{4}\\\\\\\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(\mathbf{k+1})^{2}(k^{2}+4k+4)}{4}\\\\\\\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(\mathbf{k+1})^{2}(k^{2}+2\cdot k\cdot2+2^{2})}{4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bk%2B1%7Di%5E%7B3%7D%3D%5Cdfrac%7B%28k%2B1%29%5E%7B2%7D%5Ccdot%28k%5E%7B2%7D%2B4%5Bk%2B1%5D%5E%7B1%7D%29%7D%7B4%7D%5C%5C%5C%5C%5C%5C%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bk%2B1%7Di%5E%7B3%7D%3D%5Cdfrac%7B%28%5Cmathbf%7Bk%2B1%7D%29%5E%7B2%7D%28k%5E%7B2%7D%2B4k%2B4%29%7D%7B4%7D%5C%5C%5C%5C%5C%5C%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bk%2B1%7Di%5E%7B3%7D%3D%5Cdfrac%7B%28%5Cmathbf%7Bk%2B1%7D%29%5E%7B2%7D%28k%5E%7B2%7D%2B2%5Ccdot+k%5Ccdot2%2B2%5E%7B2%7D%29%7D%7B4%7D)
Podemos escrever
como
. Logo,
![\displaystyle\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(\mathbf{k+1})^{2}(k+2)^{2}}{4}\\\\\\\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(\mathbf{k+1})^{2}(\mathbf{k+1}+1)^{2}}{4} \displaystyle\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(\mathbf{k+1})^{2}(k+2)^{2}}{4}\\\\\\\sum\limits_{i=1}^{k+1}i^{3}=\dfrac{(\mathbf{k+1})^{2}(\mathbf{k+1}+1)^{2}}{4}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bk%2B1%7Di%5E%7B3%7D%3D%5Cdfrac%7B%28%5Cmathbf%7Bk%2B1%7D%29%5E%7B2%7D%28k%2B2%29%5E%7B2%7D%7D%7B4%7D%5C%5C%5C%5C%5C%5C%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bk%2B1%7Di%5E%7B3%7D%3D%5Cdfrac%7B%28%5Cmathbf%7Bk%2B1%7D%29%5E%7B2%7D%28%5Cmathbf%7Bk%2B1%7D%2B1%29%5E%7B2%7D%7D%7B4%7D)
Mostramos que se
vale para
, então vale para ![n=k+1 n=k+1](https://tex.z-dn.net/?f=n%3Dk%2B1)
Portanto, pelo Princípio da Indução Finita, temos que
vale para todo
.
Para isso, verificaremos a validade da igualdade para
Assumiremos, por hipótese de indução, que
Agora, temos que mostrar que
Temos, por hipótese, que
Adicionando
Colocando
Podemos escrever
Mostramos que se
Portanto, pelo Princípio da Indução Finita, temos que
viniciushenrique406:
Muitíssimo obrigado :D
Respondido por
1
Explicação passo-a-passo:
Princípio da Indução Finita :
Demonstrar que :
1. Verificar a validade para n = 1 :
2. Supor a validade para um natural número k qualquer :
3 . Provar que para o natural k + 1 , em relação é também válida :
Espero ter ajudado bastante!)
Perguntas interessantes
Química,
11 meses atrás
Matemática,
1 ano atrás
Inglês,
1 ano atrás
Espanhol,
1 ano atrás
Matemática,
1 ano atrás