Matemática, perguntado por lvzinnxl7, 3 meses atrás

delta, alg pfvr!
 {2x}^{2} - 5 - 7x

Anexos:

Soluções para a tarefa

Respondido por attard
1

\Large\mathsf\displaystyle{} {2x}^{2}  - 5 - 7x \\ \\\Large\mathsf\displaystyle{} {2x}^{2} - 5 - 7x = 0 \\   \Large\mathsf\displaystyle{} {2x}^{2}   - 7x - 5 = 0 \\ \Large\mathsf\displaystyle{}\begin{cases}a = 2 \\ b =  - 7 \\ c =  - 5\end{cases} \\\\ \Large\mathsf\displaystyle{}x =  \dfrac{ -\left( - 7\right) \pm \sqrt{\left( - 7\right)^{2}  } - 4\cdot2 \cdot\left( - 5\right) }{2\cdot2}  \\\\\Large\mathsf\displaystyle{}x =  \dfrac{7 \pm \sqrt{49 + 40} }{4}   \\\\ \\ \Large\mathsf\displaystyle{}x =  \dfrac{7 \pm \sqrt{89} }{4}  \\\\\\ \Large\mathsf\displaystyle{}x =  \dfrac{7 +  \sqrt{89} }{4}  \\\\\\\Large\mathsf\displaystyle{}x =  \dfrac{7 -  \sqrt{89} }{4}   \\\\ \Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{  x_{1} =  \frac{7 +  \sqrt{89} }{4}   }}}\end{gathered}$}  \\\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{ x_{2} =  \frac{7 -  \sqrt{89} }{4}    }}}\end{gathered}$}   \\\\

\Large\mathsf\displaystyle{}\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{{ \red{Bons}}  \blue{\:Estudos}}}}\end{gathered}$}

Anexos:
Perguntas interessantes