(Deixe a resolução, agradeço muito!)
Segue o anexo, abaixo:
Anexos:
![](https://pt-static.z-dn.net/files/d6c/d5c65e45686b9c612197ad84166175cf.png)
Soluções para a tarefa
Respondido por
1
Resolvendo por Bháskara:
![10x^2 + 33x - 9 = 0 10x^2 + 33x - 9 = 0](https://tex.z-dn.net/?f=10x%5E2+%2B+33x+-+9+%3D+0+)
![x = \dfrac{-b \pm \sqrt{b^2 -4*a*c}}{2*a} x = \dfrac{-b \pm \sqrt{b^2 -4*a*c}}{2*a}](https://tex.z-dn.net/?f=x+%3D+%5Cdfrac%7B-b+%5Cpm+%5Csqrt%7Bb%5E2+-4%2Aa%2Ac%7D%7D%7B2%2Aa%7D)
a=10, b=33, c=−9
Δ=b^2−4ac
Δ=(33)2−4*(10)*(−9)
Δ=1089+360
Δ=1449
![x = \dfrac{-b \pm \sqrt{\triangle}}{2*a} \\ \\ \\ x = \dfrac{-33 \pm \sqrt{1449}}{2*10} \\ \\ \\ x = \dfrac{-33 \pm 3\sqrt{161}}{20} \\ \\ \\ x' = \dfrac{-33 + 3\sqrt{161}}{20} \\ \\ \\ x'' = \dfrac{-33 - 3\sqrt{161}}{20} x = \dfrac{-b \pm \sqrt{\triangle}}{2*a} \\ \\ \\ x = \dfrac{-33 \pm \sqrt{1449}}{2*10} \\ \\ \\ x = \dfrac{-33 \pm 3\sqrt{161}}{20} \\ \\ \\ x' = \dfrac{-33 + 3\sqrt{161}}{20} \\ \\ \\ x'' = \dfrac{-33 - 3\sqrt{161}}{20}](https://tex.z-dn.net/?f=x+%3D+%5Cdfrac%7B-b+%5Cpm+%5Csqrt%7B%5Ctriangle%7D%7D%7B2%2Aa%7D+%5C%5C++%5C%5C++%5C%5C+x+%3D+%5Cdfrac%7B-33+%5Cpm+%5Csqrt%7B1449%7D%7D%7B2%2A10%7D+%5C%5C++%5C%5C++%5C%5C+x+%3D+%5Cdfrac%7B-33+%5Cpm+3%5Csqrt%7B161%7D%7D%7B20%7D+%5C%5C++%5C%5C++%5C%5C+x%27+%3D+%5Cdfrac%7B-33+%2B+3%5Csqrt%7B161%7D%7D%7B20%7D+%5C%5C++%5C%5C++%5C%5C+x%27%27+%3D+%5Cdfrac%7B-33+-+3%5Csqrt%7B161%7D%7D%7B20%7D)
Solução da equação:
S = {
}
==========================
Calcular o número inteiro mais próximo:
![5 *x_1 * x_2 + 2(x_1 + x_2) \\ \\ \\ 5 *\dfrac{-33 + 3\sqrt{161}}{20} * \dfrac{-33 - 3\sqrt{161}}{20} + 2 ( \ \dfrac{-33 + 3\sqrt{161}}{20} + \dfrac{-33 + 3\sqrt{161}}{20}\ ) \\ \\ \\5 * \dfrac{1089 + 33(-3 \sqrt{161} - 33(3 \sqrt{161}) - 3 \sqrt{161} * -3 \sqrt{161}}{400} + 2 ( -\dfrac{33}{10} ) \\ \\ \\ 5 * \dfrac{1089 -99 \sqrt{161} + 99 \sqrt{161}) - 9 (\sqrt{161})^2}{400} + ( -\dfrac{33}{5}) \\ \\ \\ 5 *x_1 * x_2 + 2(x_1 + x_2) \\ \\ \\ 5 *\dfrac{-33 + 3\sqrt{161}}{20} * \dfrac{-33 - 3\sqrt{161}}{20} + 2 ( \ \dfrac{-33 + 3\sqrt{161}}{20} + \dfrac{-33 + 3\sqrt{161}}{20}\ ) \\ \\ \\5 * \dfrac{1089 + 33(-3 \sqrt{161} - 33(3 \sqrt{161}) - 3 \sqrt{161} * -3 \sqrt{161}}{400} + 2 ( -\dfrac{33}{10} ) \\ \\ \\ 5 * \dfrac{1089 -99 \sqrt{161} + 99 \sqrt{161}) - 9 (\sqrt{161})^2}{400} + ( -\dfrac{33}{5}) \\ \\ \\](https://tex.z-dn.net/?f=5+%2Ax_1+%2A+x_2+%2B+2%28x_1+%2B+x_2%29+%5C%5C+%5C%5C+%5C%5C+5+%2A%5Cdfrac%7B-33+%2B+3%5Csqrt%7B161%7D%7D%7B20%7D+%2A+%5Cdfrac%7B-33+-+3%5Csqrt%7B161%7D%7D%7B20%7D+%2B+2+%28+%5C+%5Cdfrac%7B-33+%2B+3%5Csqrt%7B161%7D%7D%7B20%7D+%2B+%5Cdfrac%7B-33+%2B+3%5Csqrt%7B161%7D%7D%7B20%7D%5C+%29+%5C%5C+%5C%5C+%5C%5C5+%2A++%5Cdfrac%7B1089++%2B+33%28-3+%5Csqrt%7B161%7D+-+33%283+%5Csqrt%7B161%7D%29+-+3+%5Csqrt%7B161%7D+%2A+-3+%5Csqrt%7B161%7D%7D%7B400%7D+%2B++2+%28+-%5Cdfrac%7B33%7D%7B10%7D+%29+%5C%5C++%5C%5C++%5C%5C+5+%2A++%5Cdfrac%7B1089++-99++%5Csqrt%7B161%7D+%2B+99+%5Csqrt%7B161%7D%29+-+9+%28%5Csqrt%7B161%7D%29%5E2%7D%7B400%7D+%2B++%28+-%5Cdfrac%7B33%7D%7B5%7D%29+%5C%5C++%5C%5C++%5C%5C)
![5 * \dfrac{-9}{10} + ( -\dfrac{33}{5}) \\ \\ \\ -\dfrac{9}{2} + \dfrac{-33}{5} \\ \\ \\=> \fbox{$ \ - \dfrac{111}{10} \ $} \\ \\ \\ => \fbox{$ \ - 11,1 \ $} 5 * \dfrac{-9}{10} + ( -\dfrac{33}{5}) \\ \\ \\ -\dfrac{9}{2} + \dfrac{-33}{5} \\ \\ \\=> \fbox{$ \ - \dfrac{111}{10} \ $} \\ \\ \\ => \fbox{$ \ - 11,1 \ $}](https://tex.z-dn.net/?f=5+%2A++%5Cdfrac%7B-9%7D%7B10%7D+%2B++%28+-%5Cdfrac%7B33%7D%7B5%7D%29+%5C%5C++%5C%5C++%5C%5C+-%5Cdfrac%7B9%7D%7B2%7D+%2B++%5Cdfrac%7B-33%7D%7B5%7D+++%5C%5C+++%5C%5C+%5C%5C%3D%26gt%3B++%5Cfbox%7B%24+%5C++-++%5Cdfrac%7B111%7D%7B10%7D+%5C+++%24%7D+%5C%5C++%5C%5C++%5C%5C+%3D%26gt%3B+%5Cfbox%7B%24+%5C++-++11%2C1+%5C+++%24%7D)
Resposta:
O inteiro mais próximo é:
Letra b) - 10
a=10, b=33, c=−9
Δ=b^2−4ac
Δ=(33)2−4*(10)*(−9)
Δ=1089+360
Δ=1449
Solução da equação:
S = {
==========================
Calcular o número inteiro mais próximo:
Resposta:
O inteiro mais próximo é:
Letra b) - 10
Helvio:
De nada.
Perguntas interessantes
Português,
1 ano atrás
Inglês,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás