defina e construa uma PG oscilante
Soluções para a tarefa
Respondido por
3
Classificação da PG
Dependendo dos termos que compor uma PG ela será classificada em:
• PG crescente são aquelas que os valores dos termos vão crescendo.
a 1 > 0 e q > 1, por exemplo: (1,2,4,8,16,32,64, ... )
a 1 < 0 e 0 < q < 1, por exemplo (-1 , -1/2, -1/4, ....)
• PG decrescente são aquelas que os termos vão diminuindo.
a 1 > 0 e 0 < q < 1, por exemplo: (64, 32, 16,8,... )
a 1 < 0 e q > 1, por exemplo: (-2,-4,-8,...)
• PG constante são aquelas que os termos são iguais, ou seja, a razão é igual a q = 1.
Por exemplo: (5,5,5,5,...,5)
• PG oscilante é uma PG que os seus termos intercalam em negativos e positivos, ou seja, que a1 ≠ 0 e q < 0.
• PG quase nula é uma PG que apenas o 1º elemento é diferente de zero.
Por exemplo: (2,0,0,0,0,0, ... )
Fórmula do termo geral da PG
Considerando a PG (a1, a2, a3, ... , a n – 1 , an) e utilizando a definição de PG
an = an – 1 . q com n > 1 podemos encontrar a fórmula do termo geral da PG, desde que a1 ≠ 0 e q ≠ 0.
a 2 = a1 . q
a 3 = a2 . q
a 4 = a3 . q
.................
an = a n – 1 . q
an = a1 . qn – 1
Portanto, o termo geral da PG é calculado com a utilização da fórmula:
an = a1 . qn – 1
Dependendo dos termos que compor uma PG ela será classificada em:
• PG crescente são aquelas que os valores dos termos vão crescendo.
a 1 > 0 e q > 1, por exemplo: (1,2,4,8,16,32,64, ... )
a 1 < 0 e 0 < q < 1, por exemplo (-1 , -1/2, -1/4, ....)
• PG decrescente são aquelas que os termos vão diminuindo.
a 1 > 0 e 0 < q < 1, por exemplo: (64, 32, 16,8,... )
a 1 < 0 e q > 1, por exemplo: (-2,-4,-8,...)
• PG constante são aquelas que os termos são iguais, ou seja, a razão é igual a q = 1.
Por exemplo: (5,5,5,5,...,5)
• PG oscilante é uma PG que os seus termos intercalam em negativos e positivos, ou seja, que a1 ≠ 0 e q < 0.
• PG quase nula é uma PG que apenas o 1º elemento é diferente de zero.
Por exemplo: (2,0,0,0,0,0, ... )
Fórmula do termo geral da PG
Considerando a PG (a1, a2, a3, ... , a n – 1 , an) e utilizando a definição de PG
an = an – 1 . q com n > 1 podemos encontrar a fórmula do termo geral da PG, desde que a1 ≠ 0 e q ≠ 0.
a 2 = a1 . q
a 3 = a2 . q
a 4 = a3 . q
.................
an = a n – 1 . q
an = a1 . qn – 1
Portanto, o termo geral da PG é calculado com a utilização da fórmula:
an = a1 . qn – 1
Perguntas interessantes
Geografia,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
10 meses atrás
Química,
1 ano atrás
Química,
1 ano atrás