Matemática, perguntado por army61, 11 meses atrás

decomponha os radicandos em fatores primos e, em seguida, simplifique os radicais

a)
 \sqrt[8]{64}
b)
 \sqrt[10]{625}
c)
 \sqrt[20]{243}
d)
 \sqrt[14]{128}

Soluções para a tarefa

Respondido por karolina7831
1
a)
= 8√64
= 8.8
= 64

b)
= 10√625
= 10.25
= 250

d)
 = 14√128
= 14.√64.√2
= 14.8√2
= 112√2

só não sei a c anjo

karolina7831: simmmmm
army61: omg
army61: saranghe
karolina7831: tem twitter mana?
army61: mais ou menos so uso pra ver as fotos do bts e comentar
karolina7831: saranghaeyo
karolina7831: qual o user?
army61: tenho que ver pera ai
army61: @_Menina_Kawaiii
army61: YangMi
Respondido por poty
3

Resposta:


Explicação passo-a-passo:

a)   \sqrt[8]{64} =\sqrt[8]{2^6} =\sqrt[8:2]{2^6^:^2} = \sqrt[4]{2^3}

b)  \sqrt[10]{625} = \sqrt[10]{5^4} =\sqrt[10^;^2]{5^4^:^2} = \sqrt[5]{5^2} =\sqrt[5]{25}

c) \sqrt[20]{243} =\sqrt[20]{3^5} =\sqrt[20^;^5]{3^5^:^5} = \sqrt[4]{3}

d)  \sqrt[14]{128} = \sqrt[14]{2^7} = \sqrt[14^:^7]{2^7^:^7} =\sqrt{2}


Perguntas interessantes