Matemática, perguntado por gabrielsilva152006, 8 meses atrás

Decompondo o radicando em fatores primos, escreva de forma mais simples possivel cada uma das expressoes:

 \sqrt{8}
 \sqrt{63}
 \sqrt{180}
 \sqrt{8192}
 \sqrt{2187}
 \sqrt{125}

Soluções para a tarefa

Respondido por eduardo21333
1

Resposta:

A)

 \sqrt{8}

8:2=

4:2=

2:2=

1

 \sqrt{2 \times 2 \times 2}

 \sqrt{2 {}^{2} } \times 2

2 \sqrt{2}

B)

 \sqrt{63}

63:3=

21:3=

7:7=

1

 \sqrt{3 \times 3 \times 7}

 \sqrt{3 {}^{2} \times 7 }

3 \sqrt{7}

C)

 \sqrt{180}

180:2=

90:2=

45:3=

15:3=

5:5=

1

 \sqrt{2 \times 2 \times 3 \times 3 \times 5}

 \sqrt{2 {}^{2} \times 3 {}^{2} \times 5  }

(2 \times 3) \sqrt{5}

6 \sqrt{5}

D)

 \sqrt{8192}

8192:2=

4096:2=

2048:2=

1024:2=

512:2=

256:2=

128:2=

64:2=

32:2=

16:2=

8:2=

4:2=

2:2=

1

 \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}

 \sqrt{2 {}^{2} \times 2 {}^{2} \times 2 {}^{2} \times 2 {}^{2} \times 2 {}^{2} \times 2 {}^{2} \times 2      }

2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \sqrt{2}

4 \times 4 \times 4 \sqrt{2}

64 \times 4 \sqrt{2}

256

 \sqrt{2}

E)

 \sqrt{2187}

2187:3=

729:3=

243:3=

81:3=

27:3=

9:3=

3:3=

1

 \sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}

 \sqrt{3 {}^{2} \times 3 {}^{2} \times 3 {}^{2} \times 3   }

3 \times 3 \times 3 \sqrt{3}

9 \times 3 \sqrt{3}

27 \sqrt{3}

F)

 \sqrt{125}

125:5=

25:5

5:5=

1

 \sqrt{5 \times 5 \times 5}

 \sqrt{5 {}^{2} \times 5 }

5

 \sqrt{5}

Espero ter ajudado

Perguntas interessantes