Física, perguntado por geovanabranger, 1 ano atrás

De um exemplo (com conta resolvida) de lançamento vertical.


geovanabranger: Lançamento vertical para cima***

Soluções para a tarefa

Respondido por Gabriel1Gp
0
(PUCC) Um vaso de flores cai livremente do alto de um edifício. Após ter percorrido 320 cm, ele passa por um andar que mede 2,85 m de altura. Quanto tempo ele gasta para passar por esse andar? Desprezar a resistência do ar e assumir g = 10 m/s2.

a) 1,0s

b) 0,80s

c) 0,30s

d) 1,2s

e) 1,5s

-
h1 = 320 cm = 3,20 m
h2 = 2,85 m
g = 10 m/s2

O tempo gasto para que o vaso de flores passe pelo andar é calculado com a equação:

S = S0 + v0t + 1 a.t2
                    2

Essa equação precisa do valor de v0, que corresponde à velocidade que o vaso de flores tinha ao começar a passar pelo andar.

Para calcular v0, precisamos considerar a primeira parte do movimento. Assim, v0, na equação acima, corresponde à velocidade final v em que o vaso de flores percorre os 3,20 m do primeiro trecho. Esse valor pode ser obtido a partir da equação de Torricelli:

v2 = v02 + 2.g.ΔS

ΔS = h2 = 2,85 m
v0 = 0 (início da queda)

Substituindo os dados na equação, temos:

v2 = 02 + 2.10.3,2
v2 = 64
v = √64
v = 8 m/s

Para os cálculos da outra parte do movimento, consideramos o valor de v (velocidade final no primeiro trecho) como a velocidade inicial do segundo trecho:

S = S0 + v0t + 1 a.t2
                 2

2,85 = 0 + 8.t + 1 10.t2
                 2

0 = 5.t2 + 8.t -2,85

Caímos então em uma equação de 2º Grau, em que:

a = 5;   b = 8;   c = - 2,85

Utilizamos a fórmula de Bhaskara para resolver essa equação:

Δ = b2 – 4.a.c
Δ = 82 – 4.5.(-2,85)
Δ = 64 + 57
Δ = 121

A partir do valor de Δ, encontramos os possíveis valores de t:

t = -b ±√Δ
      2a

O primeiro valor que t pode assumir é:

t' = -8 + √121
      2.5

t' = -8+11
      10

t' = 3
     10

t' = 0,3

E o segundo valor de t é:

t'' = -b - √Δ
     2a

t'' = -8 - √121
       2.5

t'' = -8 - 11
      10

t'' = -19 = -1,9
10   

Encontramos dois valores para t: 0,3 e -1,9. Como o tempo não pode ser negativo, consideramos apenas o primeiro valor, que é 0,3. Assim, a alternativa correta é a letra C.


geovanabranger: Lançamento vertical para cima***
Perguntas interessantes