De um baralho comum de 52 cartas (13 de cada naipe), qual é a probabilidade de se escolherem duas cartas, sem reposição, sendo a primeira de ouro e a segunda uma carta de Rei? Dê a resposta na forma fracionária simplificada.
Soluções para a tarefa
Respondido por
2
Quais são todas as possibilidades de pegar 2 cartas sem reposição?
52 . 51 = 2.652 maneiras
A primeira escolha precisa ser de ouro, sendo que tem apenas 13 cartas de ouro
A segunda escolha precisa ser um rei, sendo que tem apenas 4 Reis
13 . 4 =
52
Existem 52 duas formas desse cenário ocorrer
52/2.652 =
26/1.326 =
13/663 =
1/51
1/51 é a probabilidade desse cenário ocorrer
Espero ter ajudado
52 . 51 = 2.652 maneiras
A primeira escolha precisa ser de ouro, sendo que tem apenas 13 cartas de ouro
A segunda escolha precisa ser um rei, sendo que tem apenas 4 Reis
13 . 4 =
52
Existem 52 duas formas desse cenário ocorrer
52/2.652 =
26/1.326 =
13/663 =
1/51
1/51 é a probabilidade desse cenário ocorrer
Espero ter ajudado
Perguntas interessantes