Dê três exemplos de números racionais e inteiros
Soluções para a tarefa
Resposta:
inteiros: -1, -2, -3, -4,-5...
racionais: 1,5 2,5 3,4 5,7 6,9
Explicação passo-a-passo:
Conjunto dos Números Inteiros (Z)
O conjunto dos números inteiros é representado por Z. Reúne todos os elementos dos números naturais (N) e seus opostos. Assim, conclui-se que N é um subconjunto de Z (N ⊂ Z):
Subconjuntos dos Números Inteiros
Z* = {..., –4, –3, –2, –1, 1, 2, 3, 4, ...} ou Z* = Z – {0}: conjuntos dos números inteiros não-nulos, ou seja, sem o zero.
Z+ = {0, 1, 2, 3, 4, 5, ...}: conjunto dos números inteiros e não-negativos. Note que Z+ = N.
Z*+ = {1, 2, 3, 4, 5, ...}: conjunto dos números inteiros positivos e sem o zero.
Z – = {..., –5, –4, –3, –2, –1, 0}: conjunto dos números inteiros não-positivos.
Z*– = {..., –5, –4, –3, –2, –1}: conjunto dos números inteiros negativos e sem o zero.
Conjunto dos Números Racionais (Q)
O conjunto dos números racionais é representado por Q. Reúne todos os números que podem ser escritos na forma p/q, sendo p e q números inteiros e q≠0.
Q = {0, ±1, ±1/2, ±1/3, ..., ±2, ±2/3, ±2/5, ..., ±3, ±3/2, ±3/4, ...}
Note que todo número inteiro é também número racional. Assim, Z é um subconjunto de Q.