De quantas maneiras um número com 3 algarismos distintos pode ser formado utilizando 0,1,2,3,4,5?
Soluções para a tarefa
Resposta:
100 maneiras
Explicação passo-a-passo:
Segundo o princípio fundamental da combinatória, podemos determinar a partir de possibilidades de escolha para cada algarismo. Ou seja, no primeiro, tem-se 5 chances (0 não é incluído aqui), no segundo, 5 também, e no terceiro são 4. Assim, basta multiplicar os valores.
5 * 5 * 4 = 100 maneiras
Resposta: 100
Explicação passo-a-passo:
Primeiramente, devemos considerar que o número deve possuir apenas algarismos DISTINTOS - isso significa que nenhum número pode se repetir (como por exemplo 011, 222 ou 400). Além disso, é importante lembrar que, caso o primeiro digito seja 0, ele será um número de dois algarismos; portanto, o zero também deve ser descartado.
Assim, existem cinco possibilidades para o primeiro digito. (1,2,3,4,5).
Já o segundo digito pode ser todos os números menos o número que já foi utilizado no primeiro digito. ou seja, cinco possibilidades também (já que o zero é possível)
E o terceiro dígito pode ser qualquer um que não é o primeiro nem o segundo; ou seja, quatro possibilidades
Multiplicamos todas as possibilidades
5 x 5 x 4 = 100 maneiras