Matemática, perguntado por isabelinezoo, 1 ano atrás

De quantas maneiras podemos escolher 5 cartas de um baralho de 52 cartas indistivamente

Soluções para a tarefa

Respondido por trf3vip
4

52 cartas e queremos formar grupos diferentes de 5 cartas:

C(52,5) = (52!)/(5!*(52-5)!)

C(52,5) = (52!)/(5!*47!)

C(52,5) = (52*51*50*49*48*47!)/(5!*47!)

C(52,5) = (52*51*50*49*48)/(5!)

C(52,5) = (52*51*50*49*48)/(5*4*3*2*1)

C(52,5) = (13*51*5*49*16)

C(52,5) = 2598960

Ou seja, de um total de 52 cartas, podemos ter 2598960 grupos diferentes com 5 cartas cada.


Respondido por vanilsof
0

olá.

As cartas do baralho são:

quatro AS     quatro 2           quatro  3    quatro 4     ...... quatro REIS  = 52

C52,5  = 52!/(52-5)!

           = 52! / 47!

            = 52.51.50.49.48.47!/47!

             = 52.51.50.49.48

             = 6.497.352       MANEIRAS

Perguntas interessantes