Matemática, perguntado por neiviany18pdizmv, 11 meses atrás

de quantas maneiras distintas um grupo de 10 pessoas pode ser dividido em 3 grupos,de 5,3 e 2 pessoas?

Soluções para a tarefa

Respondido por manuel272
36

=> A maneira mais fácil de explicar a resolução/raciocínio desta questão é resolvê-la "por partes"


Assim teremos:

......PARA O 1º GRUPO: 10 pessoas para escolher 5 ..donde resulta C(10,5)

......PARA O 2º GRUPO: 5 pessoas (note que 5 já ficaram no 1º grupo) para escolher 3 ..donde resulta C(5,3)

......PARA O 3º GRUPO: restam apenas 2 pessoas para escolher 2 ..ou seja, temos apenas 1 possibilidade ...ou ainda C(2,2)


Integrando tudo numa única "fórmula" (equação) o número (N) de maneiras distintas de agrupar essas 10 pessoas nos grupos pretendidos será dado por:


N = C(10,5) . C(5,3) . C(2,2)

N = [10!/5!(10-5)!] .  [ 5!/3!(5-3)!] . [2!/2!(2-2)!]

N = (10!/5!5!) .  (5!/3!2!) . (2!/2!0!)

N = (10.9.8.7.6.5!/5!5!) .  (5.4.3!/3!2!) . (2!/2!1)

N = (10.9.8.7.6./5!) .  (5.4/2!) . (1)

N = 30240/120) . (20/2) . (1)

N = (252) . (10) . (1)

N = 2520 <= número de maneiras de agrupar as 10 pessoas



Espero ter ajudado

Perguntas interessantes