Matemática, perguntado por kalamazulu, 1 ano atrás

De acordo com as medidas indicadas, calcule a área total da figura, sabendo que os polígonos em vermelho, em azul e em amarelo são, respectivamente, retângulo, paralelogramo e losango.

Anexos:

Soluções para a tarefa

Respondido por LucasStorck
725
Boa tarde!

Área do retângulo vermelho:

A = L \times L \\

A = 10 \times 16 \\

A = 160 cm^{2}

Área do losango:

Note que a altura dele é 16 cm, ao traçar a altura, temos dois triângulos isósceles espelhados, e a altura do triangulo isósceles é (B.h)/2. Porém não sabemos a altura, mas sabemos o seu lado. Assim:
Altura do triângulo isósceles e da por:

h =  \sqrt{l^{2} - \frac{b^{2}}{4} } \\

h =  \sqrt{10^{2} -  \frac{16^{2}}{4} } \\

h =  \sqrt{100 -64}  \\

h =  \sqrt{36} \\

h = 6 cm

Podemos fazer também por Pitágoras:

8^{2} +d^{2} = 10^{2} \\

64 +d^{2} = 100 \\

d^{2} = 100 -64\\

d =  \sqrt{36} \\

d = 6

Se a altura é 6 cm, bem a diagonal horizontal é 12 cm, pois eram dois triângulos, agora sim, calculando a área desse Losango:

A =  \frac{D.d}{2}

A =  \frac{16.12}{2}  \\

A = 96 cm^{2}

Área dos paralelogramos:
Paralelogramo de baixo:

A = b.h

A = 20.8 \\

A =  160 cm^{2}

Paralelogramo de cima:

A = b.h

A = 24.8 \\

A = 192 cm^{2}

Somando todas a áreas:

A_t = 160 +96 +160 +192 \\

A_t = 608 cm^{2}

Bons estudos!
Respondido por silvapgs50
1

A soma das áreas do retângulo, dos paralelogramos e do losango é igual a 608 centímetros quadrados.

Qual a soma das áreas?

A área de um retângulo é igual ao produto do comprimento da altura pelo comprimento da base, logo, a área do retângulo em vermelho é igual a:

16*10 = 160 \; cm^2

Para calcular a área de um paralelogramo devemos multiplicar a medida da base pela medida da altura, portanto, a soma das áreas dos dois paralelogramos azuis é:

8*20 + 8*24 = 352 \; cm^2

A área de um losango pode ser calculada pelo produto das medidas das diagonais dividido por 2. Como na imagem não é informada a medida de uma das diagonais devemos dividir o losango em 4 triângulos retângulos e utilizar o teorema de Pitágoras para calcular a medida da diagonal que falta. Dessa forma, podemos escrever:

10^2 = (16/2)^2 + (d/2)^2

d/2 = \sqrt{100-64}

d = 12 \; cm

Com esse resultado podemos calcular a área do losango amarelo:

12*16/2 = 96 \; cm^2

Somando os resultados temos que a área total é:

160+352+96 = 608 \; cm^2

Para mais informações sobre áreas de quadriláteros, acesse: https://brainly.com.br/tarefa/38365322

#SPJ3

Anexos:
Perguntas interessantes