de a soma dos termos da p.a. (3,6,9,...5790
Soluções para a tarefa
Respondido por
2
Encontrar a razão da PA
r = a2 - a1
r = 6 - 3
r = 3
===
Encontrar a quantidade de termos da PA
an = a1 + ( n -1) . r
5790 = 3 + ( n -1) . 3
5790 = 3 + 3n - 3
5790 = 0 + 3n
5790 = 3n
n = 5790 / 3
n = 1930
===
Soma dos termos:
Sn = ( a1 + an ) . n / 2
Sn = ( 3 + 5790 ) . 1930 / 2
Sn = 5793 . 965
Sn = 5590245
r = a2 - a1
r = 6 - 3
r = 3
===
Encontrar a quantidade de termos da PA
an = a1 + ( n -1) . r
5790 = 3 + ( n -1) . 3
5790 = 3 + 3n - 3
5790 = 0 + 3n
5790 = 3n
n = 5790 / 3
n = 1930
===
Soma dos termos:
Sn = ( a1 + an ) . n / 2
Sn = ( 3 + 5790 ) . 1930 / 2
Sn = 5793 . 965
Sn = 5590245
Helvio:
De nada.
Perguntas interessantes
Matemática,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás