Matemática, perguntado por daviddiasbarbosa, 11 meses atrás

Das alternativas abaixo, uma é FALSA. Identifique-a e conserte-a: (a + b)2 = a2 + 2ab + b2 a 2 – b 2 = (a – b) • (a + b) a 3 – b 3 = (a – b) • (a2 + ab + b2 ) a 2 + b2 = (a + b)2 – 2ab a 3 + b3 = (a + b) • (a2 – 2ab + b2 )

Soluções para a tarefa

Respondido por alycefrancelino
26

Resposta:

Das alternativas abaixo, uma é FALSA. Identifique-a. 

a) (a + b)2 = a2 + 2ab + b2 

(a + b)²

(a + b)(a + b) =

a² + ab + ab + b²

a² + 2ab + b²

assim

(a + b)² = a² + 2ab + b²  VERDADEIRO

b) a 2 – b 2 = (a – b) • (a + b) 

a² - b² = (a - b)(a + b)

a² - b²  = a² + ab - ab -b²

a² - b² = a¹         0     - b²

a² - b² = a² - b²

assim

a² - b² = (a -b)(a +b)  VERDADEIRO

c) a 3 – b 3 = (a – b) • (a2 + ab + b2 ) 

a³ - b³ = (a - b)(a² + ab + b²)

a³ - b³ = a³ + a²b + ab² - a²b - ab² - b³   junta iguais

a³ - b³ = a³ + a²b - a²b + ab² - ab² - b³

a³ - b² = a³          0             0         - b³

 a³ - b³ = a³ - b³

assim

a³ - b³ = (a + b)(a² + ab + b²)  VERDADEIRO

 

d) a 2 + b2 = (a + b)2 – 2ab 

a² + b² = (a + b)² - 2ab

a² + b² = (a + b)(a + b) - 2ab

a² + b² = a² + ab + ab + b² - 2ab

a² + b² = a² + 2ab + b²      - 2ab    junta iguais

a² + b² = a² + 2ab - 2ab + b²

a² + b² = a²           0        + b²

a² = b² = a² + b²

assim

a² + b² = (a + b)² - 2ab   VERADEIRO

e) a 3 + b3 = (a + b) • (a2 – 2ab + b2 )

a³ + b³ = (a + b)(a² - 2ab + b²)

a³ + b³ = a³ - 2a²b + ab² + a²b- 2ab² + b³  junta iguais

a³ + b³ = a³ - 2a²b+ a²b + ab² - 2ab² + b³

a³ + b³ = a³          - a²b          - ab²    + b³

a³ + b³ = a³ - a²b - ab² + b³

assim

a³ + b³ = (a + b)(a² - 2ab + b³)  FALSOOOOOOOOO!!!!!!!!!!!!!

4.4

ESPERO TER AJUDADO ♥️♥️

Perguntas interessantes