ENEM, perguntado por karinamincon6169, 5 meses atrás

Daniel é técnico em refrigeração e realizou um teste em uma câmara fria para verificar a eficiência do aparelho. Nesse teste, ele observou durante 3 minutos a variação da temperatura nessa câmara fria. Com base nos dados obtidos, Daniel concluiu que essa temperatura variou em função do tempo decorrido do teste. A expressão dessa função é t(x)=2x2–6x, em que t(x) representa a temperatura na câmara fria, em graus Célsius, e x representa o tempo decorrido, em minutos, desde o início do teste. Qual foi a temperatura mínima, em graus Célsius, nessa câmara fria durante esse teste? −6,0 °C. −4,5 °C 0,0 °C. 1,5 °C 2,0 °C.


NunoSpinelli: A resposta possível é 0,0 ºC. Mas essa questão foi mal formulada, porque pergunta qual a temperatura mínima atingida no teste, se considerarmos o x=1 ou x=2 que seriam o tempo de 1 minuto e 2 minutos teríamos a temperatura de - 4ºC. Mas como não existe essa opção então considerei o x = 3, o tempo em 3 minutos, e assim chegamos a resposta de 0ºC
rafa7659: 4,5C

Soluções para a tarefa

Respondido por 234bot0
70

Resposta:

-4,5°C

Explicação:

A questão quer saber qual o valor mínimo que pode ser atingida em 3 minutos se a variação de calor seguir essa formula: t(X)=2X^{2} - 6X

Eu não sei se existe um método objetivo para se chegar a esse resultado, mas é possível se chegar a uma conclusão se você substituir o valor de X pelos valores do intervalo de tempo de 0 minutos a 3 minutos que é o tempo em que Daniel observou a variação de temperatura.

Primeiro o mais obvio é tentar com 3 que da 0,0 graus depois tentar com 2 e 1 que vão dar -4.

No caso do 3

t(X)=2X^{2} - 6X

t(X)=2x3^{2} - 6x3\\t(X)=2x9 - 18\\t(X)=18 - 18= 0,0

(Lembrando que pela ordem das operações, nesse caso, primeiro elevamos o numero depois multiplicamos e depois subtraímos, por isso eu fiz 2x3² = 2x9 = 18 ao em vez de 2x3² = 6² = 36 e por esse mesmo motivo eu só subtrai os numeros depois de acabar com todas as multiplicações)

No caso do 2

t(X)=2X^{2} - 6X

t(X)=2x2^{2} - 6x2\\t(X)=2x4 - 12\\t(X)=8 - 12= -4

No caso do 1

t(X)=2X^{2} - 6X

t(X)=2x1^{2} - 6x1\\t(X)=2x1 - 6\\t(X)=2 - 6= -4

Só com isso ja da para saber que ao menos 0,0 não é o menor, mas como não existe opção 4 basta nós continuarmos nossos cálculos com os numeros decimais, afinal entre um numero e outro existem infinitos outros numeros.

(obviamente não vou tentar com 0, pois o resultado daria 0,0 e nós ja vimos que esse não é o mínimo possível)

Seguindo aquela mesma logica eu substitui por 2,5 por 1,5 por, por 0,8 por 1,1 por 1,2 por 1,3 por 1,4 por 1,6  por 1,7 por 2,2 e por 1,55. Após todos esses cálculos, descobri que o menor valor vem pelo X=1,5 que é -4,5. Descobri também que os valores de 0,qualquer numero são superiores (ainda negativos, porem maiores, ou seja, mais próximos do zero) ao de 1,qualquer numero, que do 1 ao 1,5 o valor diminui até chegar em 1,5 mas após isso eles voltam a crescer e que 1,5 tem valor menor que numeros como 1,55.

Com base nesses dados é possível dizer que provavelmente nenhuma temperatura será menor que o valor de X=1,5 terá e se somado ao fato de que numeros menores que 1,5 (principalmente os menores que 1) deixam o 6X muito pequeno e numeros acima de 1,5 deixam o 2X² muito grande dá pra se dizer que não tem como ser -6, sendo assim a melhor resposta é -4,5.

Para quem não sabe elevar numeros decimais, lembrem-se que qualquer numero elevado é a multiplicação dele mesmo uma quantidade de vezes que a elevação diz (o expoente), então é so fazer multiplicação. No caso de 1,5² faz 1,5x1,5 e se for um numero maior que 2 vai pegando os resultados e multiplicando por 1,5 até você ter multiplicado tantas vezes quanto o expoente como em 1,5³ -->1,5x1,5= 2,25 que vezes 1,5 de novo da 1,5³ ou 2,8125.

Para quem não sabe fazer multiplicação com numero decimal, é so fazer a multiplicação normalmente ignorando a virgula e depois contar quantas casas tem para trás da virgula nos numeros envolvidos na multiplicação e depois por uma virgula no resultado deixando aquele mesmo numero de casas para a esquerda da virgula.

ex:

Anexos:
Respondido por lucelialuisa
1

A temperatura minima observada no período de teste foi de -4,5 ºC (Alternativa B).

O técnico acompanhou a temperatura da câmara fria durante três minutos e chegou a expressão t(x) = 2x² - 6x.

Vemos que essa é uma equação do segundo grau, logo, teremos um ponto minimo (a > 0) dado pelo vértice dessa equação. O valor de x desse vértice é dado por:

x = - b ÷ 2a

Observando a equação, temos que b = - 6 e a = 2, logo, temos que:

x = -(-6) ÷ 2.(2)

x = 6 ÷ 4 = 1,5 minutos

Assim, a função é minima quando x = 1,5, sendo que o valor da temperatura nesse caso é de:

t(1,5) = 2.(1,5)² - 6.(1,5)

t(1,5) = 2.(2,25) - 9,0

t(1,5) = 4,5 - 9,0 = -4,5 ºC

Para saber mais:

https://brainly.com.br/tarefa/22586847

Espero ter ajudado!

Anexos:
Perguntas interessantes