Matemática, perguntado por carolinazanin, 1 ano atrás

Dados os vetores u=(3,-1) e v=(-1,2), determinar o vetor w tal que:
a) 4(u-v)+1/3w=2u-w

Soluções para a tarefa

Respondido por JBRY
3
Boa noite Carolina!

Solução!


 \overrightarrow{U}=(3,-1) \\\\\\
 \overrightarrow{V}=(-1,2)


 4(\overrightarrow{U}- \overrightarrow{V})+  \dfrac{ \overrightarrow{1W}}{3}=  2\overrightarrow{U}- \overrightarrow{W}\\\\\\

 \dfrac{ \overrightarrow{1W}}{3}+\overrightarrow{W}= -4(\overrightarrow{U}- \overrightarrow{V})+2\overrightarrow{U}\\\\\\\

 \dfrac{ \overrightarrow{1W}}{3}+\overrightarrow{W}= (\overrightarrow{-4U}+\overrightarrow{4V})+2\overrightarrow{U}\\\\\\\

 \dfrac{ \overrightarrow{1W}}{3}+\overrightarrow{W}= \overrightarrow{(-2U}+\overrightarrow{4V})\\\\\\\



 \dfrac{ \overrightarrow{1W}}{3}+\overrightarrow{W}= (\overrightarrow{-2(3,-1)}+(\overrightarrow{4(-1,2})\\\\\\\

 \dfrac{ \overrightarrow{1W}}{3}+\overrightarrow{W}= \overrightarrow{(-10,10)}\\\\\\\

 \overrightarrow{1W}+\overrightarrow{3W}= \overrightarrow{3(-10,10)}\\\\\\\


\overrightarrow{4W}= \overrightarrow{3(-10,10)}\\\\\\\

\overrightarrow{4W}= \overrightarrow{(-30,30)}\\\\\\\

\overrightarrow{W}= \dfrac{-30}{4}, \dfrac{30}{4} \\\\\\\

 \overrightarrow{W}= \dfrac{-15}{2}, \dfrac{15}{2}

Boa noite!
Bons estudos1
Perguntas interessantes