Matemática, perguntado por angelabacci, 1 ano atrás

Dados os vetores u = 2,-3 v= 1,-1 e w= -2,1 , determinar a) 2u - v b) v - u + 2w c) 0,5 u - 2 v - w d) 3u - 0,5 v - 0,5 w

Soluções para a tarefa

Respondido por avengercrawl
4
Olá

\vec{u}=(2,-3)~~~~\vec{v}=(1,-1)~~~~\vec{w}=(-2,1)

A)  

\displaystyle 2\vec{u}-\vec{v} \\  \\  \\ \text{Para encontrar o vetor }2\vec{u}~\text{Basta multiplicar o vetor }\vec{u}\text{ por 2} \\  \\ 2\cdot \vec{u}=2(2,-3)~~~~ \longrightarrow~~~\boxed{2\vec{u}=(4,-6)} \\  \\  \\ \text{Agora basta substrair o vetor }2\vec{u}~\text{do vetor }\vec{v} \\  \\  \\ 2\vec{u}-\vec{v}=(4,-6)-(1,-1)~=~((4-1),(-6-(-1)))~=~(3,-5) \\  \\ \boxed{\boxed{2\vec{u}-\vec{v}=(3,-5)}}


B)

\displaystyle  \vec{v}-\vec{u}+2\vec{w}= \\  \\  \\ \text{Mesmo processo do item anterior, multiplica o vetor }\vec{w} \text{ por 2} \\  \\ 2\vec{w}=2\cdot(-2,1)~~~~~\longrightarrow~\boxed{2\vec{w}=(-4,2)} \\  \\  \\ \text{Primeiro subtrair o vetor }\vec{v}\text{ do vetor }\vec{v},~\text{e depois soma com o vetor }2\vec{w} \\  \\  \\ \vec{v}-\vec{u}=(1,-1)-(2,-3) \\  \vec{v}-\vec{u}=((1-2),(-1-(-3))) \\  \boxed{\vec{v}-\vec{u}=(-1,2)} \\  \\  \vec{v}-\vec{u}+ 2\vec{w}=(-1,2)+(-4,2)
\vec{v}-\vec{u}+ 2\vec{w}=(-1+(-4),2+2) \\  \\  \\\boxed{\boxed{ \vec{v}-\vec{u}+ 2\vec{w}=(-5,4)}}


C)

Para facilitar, podemos escrever 0,5 como  \displaystyle \frac{1}{2}

\displaystyle  \frac{1}{2} \vec{u}~-2\vec{v}-\vec{w}

\displaystyle  \frac{1}{2}\vec{u}= \frac{1}{2}\cdot(2,-3)   \\  \\ \frac{1}{2}\vec{u}=( \frac{2}{2} , \frac{-3}{2} ) \\ \\ \\ \boxed{\frac{1}{2}\vec{u}=(1,- \frac{3}{2} )} \\  \\  \\  \\ 2\vec{v}=2\cdot(1,-1) \\  \\ \boxed{2\vec{v}=(2,-2)} \\  \\  \\  \\  \frac{1}{2}\vec{u}-2\vec{v}=~(1, -\frac{3}{2} ) -(2,-2) \\  \\   \frac{1}{2}\vec{u}-2\vec{v}=~((1-2),(- \frac{3}{2}-(-2)) )

\displaystyle  \frac{1}{2}\vec{u}-2\vec{v}=~(-1, \frac{1}{2} ) \\  \\  \\   \text{Agora temos que subtrair esse vetor do vetor }\vec{w} \\  \\  \\   \frac{1}{2}\vec{u}-2\vec{v}-\vec{w}=~ (-1, \frac{1}{2} )-(-2,1) \\  \\  \\  \frac{1}{2}\vec{u}-2\vec{v}-\vec{w}=~((-1-(-2)),( \frac{1}{2}-1 )) \\  \\  \\  \\  \boxed{\boxed{\frac{1}{2}\vec{u}-2\vec{v}-\vec{w}=~(1,- \frac{1}{2} )}}




D)


Faremos do mesmo jeito do item anterior, no lugar de 0,5 escreveremos \displaystyle  \frac{1}{2}

\displaystyle 3\vec{u}- \frac{1}{2}\vec{v}-2\vec{w}

\displaystyle \text{Encontrando o vetor }3\vec{u} \\  \\ 3\vec{u}=3\cdot(2,-3) \\  \\ \boxed{3\vec{u}=(6,-9)} \\  \\  \\  \text{encontrando o vetor } \frac{1}{2}\vec{v} \\  \\  \frac{1}{2}\vec{v}= \frac{1}{2}\cdot(1,-1)    \\  \\  \\\boxed{ \frac{1}{2}\vec{v}=( \frac{1}{2} ,- \frac{1}{2} )} \\  \\  \\  \\ \text{encontrando o vetor } \frac{1}{2}\vec{w}
\displaystyle \frac{1}{2}\vec{w} = \frac{1}{2} \cdot (-2,1) \\  \\  \\ \frac{1}{2}\vec{w} =(- \frac{2}{2}, \frac{1}{2}  ) \\  \\  \\ \boxed{\frac{1}{2}\vec{w} =(-1, \frac{1}{2} )} \\  \\  \\  \\ \text{subtraindo o vetor }3\vec{u} ~do~\text{vetor}~\frac{1}{2}\vec{v}  \\  \\  \\ 3\vec{u} -\frac{1}{2}\vec{v} =(6,-9)-( \frac{1}{2} ,- \frac{1}{2} )

\displaystyle 3\vec{u} -\frac{1}{2}\vec{v} =((6- \frac{1}{2}) ,(-9-(- \frac{1}{2})) ) \\  \\  \\  \boxed{3\vec{u} -\frac{1}{2}\vec{v} =( \frac{11}{2},- \frac{17}{2}  )} \\  \\  \\  \\ \text{Pegando este vetor que acabamos de encontrar e subtraindo pelo vetor} \\  \frac{1}{2} \vec{w} \\  \\  \\  \\  3\vec{u} -\frac{1}{2}\vec{v}- \frac{1}{2} \vec{w} =~( \frac{11}{2},- \frac{17}{2}  )-(-1, \frac{1}{2} )

\displaystyle 3\vec{u} -\frac{1}{2}\vec{v}- \frac{1}{2} \vec{w} =~(( \frac{11}{2}-(-1) ), (-(\frac{17}{2}- \frac{1}{2})  ) \\  \\  \\ \boxed{\boxed{3\vec{u} -\frac{1}{2}\vec{v}- \frac{1}{2} \vec{w} =( \frac{13}{2},-9 )}}









Caso não consiga visualizar, tente abrir pelo navegador:
https://brainly.com.br/tarefa/8355178
Perguntas interessantes