Dados os vetores u (2,1,0) e v(1,3,2) seu produto vetorial é
Soluções para a tarefa
Respondido por
0
Gilvane, Produto Vetorial você tem como resultado um outro vetor, porém, ortognal aos dois acima. Para fazer essa conta resolva o determinante abaixo de ordem 3 por Sarrus, Laplace o método que mais for conveniente para você.
Eu vou usar Sarrrus
i = (1,0,0) → versor canônico na direção x
j = (0,1,0) → versor canônico na direção y
k =(0,0,1) → versor canônico na direção z
| i j k |
|2 1 0 | = u X v ( X → produto vetorial)
|1 3 2 |
| i j k | i j |
|2 1 0 | 2 1| = (-k -0 -4j) + (2i +0 +6k) = 2i -4j +5k
|1 3 2 | 1 3|
u X v = 2i -4j +5k
*-*-*-*-*-*-*
Obrigado pela oportunidade.
Espero ter ajudado, boa sorte.
Fonte - Matemática
SSRC - 2015
*-*-*-*-*-*-*
Eu vou usar Sarrrus
i = (1,0,0) → versor canônico na direção x
j = (0,1,0) → versor canônico na direção y
k =(0,0,1) → versor canônico na direção z
| i j k |
|2 1 0 | = u X v ( X → produto vetorial)
|1 3 2 |
| i j k | i j |
|2 1 0 | 2 1| = (-k -0 -4j) + (2i +0 +6k) = 2i -4j +5k
|1 3 2 | 1 3|
u X v = 2i -4j +5k
*-*-*-*-*-*-*
Obrigado pela oportunidade.
Espero ter ajudado, boa sorte.
Fonte - Matemática
SSRC - 2015
*-*-*-*-*-*-*
Perguntas interessantes
Direito,
9 meses atrás
Filosofia,
9 meses atrás
Geografia,
9 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Psicologia,
1 ano atrás