Matemática, perguntado por SraAzevedo, 1 ano atrás

Dados os pontos:

A (1,3)
B (5,3)
C (1,7)
D (0,3)
E (-4,1)
F (-6,7)
G (-4, 1)
H (1, -5)
I (-2,-7)


Calcule a distância entre:

AB
BC
CA
DE
EF
FD
GH
HI
IG

Soluções para a tarefa

Respondido por Usuário anônimo
0
Olá !

Distância do segmento \mathsf{\overline{AB}}

\mathsf{D_{\overline{AB}}=\sqrt{\left(X_{B} - X_{A})^{2} + (Y_{B} - Y_{A}\right)^{2}}} \\\\\\ \mathsf{D_{\overline{AB}}=\sqrt{\left(5 - 1)^{2} + (3 - 3\right)^{2}}} \\\\\\ \mathsf{D_{\overline{AB}}=\sqrt{(4)^{2} + (0)^{2}}} \\\\\\ \mathsf{D_{\overline{AB}}=\sqrt{(16 + 0)}} \\\\\\ \mathsf{D_{\overline{AB}}=\sqrt{16}} \\\\\\ \mathsf{D_{\overline{AB}}=4~~U.C}

Portanto , a distância de \mathsf{\overline{AB}} será 4 U.C

Distância do segmento \mathsf{\overline{BC}}

\mathsf{D_{\overline{BC}}=\sqrt{\left(X_{C} - X_{B})^{2} + (Y_{C} - Y_{B}\right)^{2}}} \\\\\\ \mathsf{D_{\overline{BC}}=\sqrt{\left(1 - 5)^{2} + (7 - 3\right)^{2}}} \\\\\\ \mathsf{D_{\overline{BC}}=\sqrt{(-4)^{2} + (4)^{2}}} \\\\\\ \mathsf{D_{\overline{BC}}=\sqrt{(16 + 16)}} \\\\\\ \mathsf{D_{\overline{BC}}=\sqrt{32}} \\\\\\ \mathsf{D_{\overline{BC}}=4\sqrt{2}~~U.C}

Portanto , a distância do segmento \mathsf{\overline{BC}} será\mathsf{4\sqrt{2}~~U.C}

Distância do segmento \mathsf{\overline{CA}} ou \mathsf{\overline{AC}}

\mathsf{D_{\overline{CA}}=\sqrt{\left(X_{C} - X_{A})^{2} + (Y_{C} - Y_{A}\right)^{2}}} \\\\\\ \mathsf{D_{\overline{CA}}=\sqrt{\left(1 - 1)^{2} + (7 - 3\right)^{2}}} \\\\\\ \mathsf{D_{\overline{CA}}=\sqrt{(0)^{2} + (4)^{2}}} \\\\\\ \mathsf{D_{\overline{CA}}=\sqrt{(0^{2} + 16)}} \\\\\\ \mathsf{D_{\overline{CA}}=\sqrt{16}} \\\\\\ \mathsf{D_{\overline{CA}}=4~~U.C}

Portanto , a distância do segmento \mathsf{\overline{CA}} será \mathsf{4~~U.C}

Distância do segmento \mathsf{\overline{DE}}

\mathsf{D_{\overline{DE}}=\sqrt{\left(X_{E} - X_{D})^{2} + (Y_{E} - Y_{D}\right)^{2}}} \\\\\\ \mathsf{D_{\overline{DE}}=\sqrt{\left(-4 - 0)^{2} + (1 - 3\right)^{2}}} \\\\\\ \mathsf{D_{\overline{DE}}=\sqrt{(-4)^{2} + (-2)^{2}}} \\\\\\ \mathsf{D_{\overline{DE}}=\sqrt{(16 + 4)}} \\\\\\ \mathsf{D_{\overline{DE}}=\sqrt{20}} \\\\\\ \mathsf{D_{\overline{DE}}=2\sqrt{5}~~U.C}

Portanto , a distância do segmento. \mathsf{\overline{DE}} \mathsf{2\sqrt{5}~~U.C}

Distância do segmento \mathsf{\overline{EF}}

\mathsf{D_{\overline{EF}}=\sqrt{\left(X_{B} - X_{A})^{2} + (Y_{B} - Y_{A}\right)^{2}}} \\\\\\ \mathsf{D_{\overline{EF}}=\sqrt{\left((-6) - (-4))^{2} + (7 - 1\right)^{2}}} \\\\\\ \mathsf{D_{\overline{EF}}=\sqrt{(-2)^{2} + (6)^{2}}} \\\\\\ \mathsf{D_{\overline{EF}}=\sqrt{(4 + 36)}} \\\\\\ \mathsf{D_{\overline{EF}}=\sqrt{40}} \\\\\\ \mathsf{D_{\overline{EF}}=2\sqrt{10}~~U.C}

Portanto , a distância do segmento \mathsf{\overline{EF}} será \mathsf{2\sqrt{10}}

Distância do segmento \mathsf{\overline{FD}} ou \mathsf{\overline{DF}}

\mathsf{D_{\overline{DF}}=\sqrt{\left(X_{F} - X_{D})^{2} + (Y_{F} - Y_{D}\right)^{2}}} \\\\\\ \mathsf{D_{\overline{DF}}=\sqrt{\left(-6 - 0)^{2} + (7 - 3\right)^{2}}} \\\\\\ \mathsf{D_{\overline{DF}}=\sqrt{(-6)^{2} + (4)^{2}}} \\\\\\ \mathsf{D_{\overline{DF}}=\sqrt{(36 + 16)}} \\\\\\ \mathsf{D_{\overline{DF}}=\sqrt{52}} \\\\\\ \mathsf{D_{\overline{DF}}=2\sqrt{13}}

Portanto , a distância do segmento \mathsf{\overline{DF}} \mathsf{2\sqrt{13}}

Distância do segmento \mathsf{\overline{GH}}

\mathsf{D_{\overline{GH}}=\sqrt{\left(X_{H} - X_{G})^{2} + (Y_{H} - Y_{G}\right)^{2}}} \\\\\\ \mathsf{D_{\overline{GH}}=\sqrt{\left(1 - (-4)^{2} + (-5 - 1\right)^{2}}} \\\\\\ \mathsf{D_{\overline{GH}}=\sqrt{(5)^{2} + (-6)^{2}}} \\\\\\ \mathsf{D_{\overline{GH}}=\sqrt{(25 + 36)}} \\\\\\ \mathsf{D_{\overline{GH}}=\sqrt{61}~~U.C}

Portanto , a distância do segmento \mathsf{\overline{GH}} será \mathsf{\sqrt{61}~~U.C}

Distância do segmento \mathsf{\overline{HI}}

\mathsf{D_{\overline{HI}}=\sqrt{\left(X_{I} - X_{H})^{2} + (Y_{I} - Y_{H}\right)^{2}}} \\\\\\ \mathsf{D_{\overline{HI}}=\sqrt{\left(-2 - 1)^{2} + (-7 - (-5)\right)^{2}}} \\\\\\ \mathsf{D_{\overline{HI}}=\sqrt{(-3)^{2} + (-2)^{2}}} \\\\\\ \mathsf{D_{\overline{HI}}=\sqrt{9 + 4}} \\\\\\ \mathsf{D_{\overline{HI}}=\sqrt{13}~~U.C}

Portanto , a distância do segmento \mathsf{\overline{HI}} será \mathsf{\sqrt{13}~~U.C}

Distância do segmento \mathsf{\overline{IG}} ou \mathsf{\overline{GI}}

\mathsf{D_{\overline{GI}}=\sqrt{\left(X_{I} - X_{G})^{2} + (Y_{G} - Y_{I}\right)^{2}}} \\\\\\ \mathsf{D_{\overline{GI}}=\sqrt{\left(-2 - (-4)^{2} + (-7 - (-5)\right)^{2}}} \\\\\\ \mathsf{D_{\overline{GI}}=\sqrt{(2)^{2} + (-2)^{2}}} \\\\\\ \mathsf{D_{\overline{GI}}=\sqrt{(4 + 4)}} \\\\\\ \mathsf{D_{\overline{GI}}=\sqrt{8}~U.C} \\\\\\ \mathsf{D_{\overline{GI}}=2\sqrt{2}}

Portanto , a distância do segmento \mathsf{\overline{GI}} será \mathsf{2\sqrt{2}~U.C}

SraAzevedo: A distância de IG não acho que ficou com algum erro de formatação,pois não aparece.
SraAzevedo: IG não. É a HI
Usuário anônimo: É os caracteres
Usuário anônimo: você colocou muita coisa
Usuário anônimo: Está bugando na programação do LaTeX
Usuário anônimo: Vou tentar obrigar o sistema aceitar
Usuário anônimo: Deu trabalho eu fazer o sistema do Brainly engolir os códigos.
Usuário anônimo: mas enfim consegui ;)
SraAzevedo: Obrigada! ;)
Respondido por Usuário anônimo
2
A (1,3)
B (5,3)
C (1,7)
D (0,3)
E (-4,1)
F (-6,7)
G (-4, 1)
H (1, -5)
I (-2,-7)

Calcule a distância entre:

AB


Dist=√(∆x)^2+(∆y)^2=√(5-1)^2+(3-3)^2

Dist=√(4)^2+(0)^2

Dist=√16

Dist=4



BC

Dist=√(∆x)^2+(∆y)^2

Dist=√(5-1)^2+(7-3)^2

Dist=√(4)^2+(4)^2

dist=√16+16

Dist=√2.(16)

Dist=4√2


CA

Dist=√(∆x)^2+(∆y)^2

Dist=√(1-1)^2+(7-3)^2

Dist=√(0)^2+(4)^2

Dist=√0+16

dist=√16

Dist=4


DE

Dist=√(∆x)^2+(∆y)^2

Dist=√(-4-0)^2+(3-1)^2

Dist=√(-4)^2+(2)^2

Dist=√16+4

dia=√4.(5)

Dist=2√5


EF

E (-4,1)
F (-6,7)

Dist=√(∆x)^2+(∆y)^2

Dist=√(-6+4)^2+(7-1)^2

Dist=√(-2)^2+(6)^2

Dist=√4+36

Dist=2√10


FD

D (0,3)

F (-6,7)

Dist=√(∆x)^2+(∆y)^2

Dist=√(-6-0)^2+(7-3)^2

Dist=√(-6)^2+(4)^2

Dist=√36+16

Dist=√52



GH
G (-4, 1)
H (1, -5)


Dist=√(∆x)^2+(∆y)^2

Dist=√(-4-1)^2+(-5-1)^2

Dist=√(25)+(36)

Dist=√61


HI


H (1, -5)
I (-2,-7)


Dist=√(∆x)^2+(∆y)^2

Dist=√(-2-1)^2+(-7+5)^2

Dist=√(-3)^2+(-2)^2

Dist=√9+4

Dist=√13


IG

G (-4, 1)
I (-2,-7)

Dist=√(∆x)^2+(∆y)^2

Dist=√(-4+2)^2+(-7-1)^2

Dist=√(-2)^2+(-8)^2

Dist=√4+64

Dist=√70

espero ter ajudado!

boa tarde!
Perguntas interessantes