Matemática, perguntado por biaaham, 1 ano atrás

dados log2 = 0,3 e log3 =0,48 , qual log de 75

Soluções para a tarefa

Respondido por FibonacciTH
5
Lembrete:

• \log _b\left(a^c\right)=c\cdot \log _b\left(a\right)
• \log _b\left(a\cdot c\right)=\log _b\left(a\right)+\log _b\left(c\right)
• \log _b\left(a\div c\right)=\log _b\left(a\right)-\log _b\left(c\right)

Dados:

\log 2=0,3
• \log 3=0,48

Primeiramente iremos decompor o numero 75:

75 | 3
25 
| 5
5   
| 5
1

\log \left(75\right)\\\log \left(3\cdot 5\cdot 5\right)\\\log \left(3\cdot \frac{10}{2}\cdot \frac{10}{2}\right)\\\log \left(3\cdot \frac{10^2}{2^2}\right)\\\log \left(3\right)+\log \left(\frac{10^2}{2^2}\right)\\\log \left(3\right)+\left(\log \left(10^2\right)-\log \:\left(2^2\right)\right)\\\log \left(3\right)+\left(2\log \left(10\right)-2\log \:\left(2\right)\right)\\0,48+\left(\left(2\cdot 1\right)-\left(2\cdot 0,3\right)\right)\\0,48+\left(2-0,6\right)\\0,48+1,4\\\boxed{\bold{1,88}}
Perguntas interessantes