Dados A(6,5) e B(-2,13), obtenha em que a reta AB intercepta o eixo da s abscissas.
Soluções para a tarefa
Respondido por
1
Vamos obter a equação da reta
Tem a forma
y = ax + b
a = coeficiente angular
= (y2 - y1)/(x2 - x1)
b = coeficiente linear (ordenada na origem)
No caso em estudo
a = (13 - 2)/(- 2 - 6)
= 11/-8
a = - 11/8
Em A(6, 5)
5 = - 11/8(6) + b
5 + 33/4 = b
b = 53/4
Equação
y = - (11/8)x + 53/4
A reta intercepta o eixo das abscissas quando y = 0
0 = - (11/8)x + 53/4
- 53/4 = - (11/8)x
x = (53/4)/(11/8)
x = 106/11
PONTO DE INTERSEÇÃO
P(106/11, 0)
Tem a forma
y = ax + b
a = coeficiente angular
= (y2 - y1)/(x2 - x1)
b = coeficiente linear (ordenada na origem)
No caso em estudo
a = (13 - 2)/(- 2 - 6)
= 11/-8
a = - 11/8
Em A(6, 5)
5 = - 11/8(6) + b
5 + 33/4 = b
b = 53/4
Equação
y = - (11/8)x + 53/4
A reta intercepta o eixo das abscissas quando y = 0
0 = - (11/8)x + 53/4
- 53/4 = - (11/8)x
x = (53/4)/(11/8)
x = 106/11
PONTO DE INTERSEÇÃO
P(106/11, 0)
Perguntas interessantes
Matemática,
10 meses atrás
Português,
10 meses atrás
Matemática,
10 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás