dado w= (-4, -2, -21), determinar os valores de alfa e beta tais que w seja combinação linear de u= (1, -1, 0) e v= (2, 0, 7), ou seja, w=αu+ βv ?????
Soluções para a tarefa
Respondido por
1
Olá
____________________________________________________________
Caso não consiga visualizar, tente abrir pelo navegador:
https://brainly.com.br/tarefa/8646169
____________________________________________________________
![\displaystyle \vec{w}=(-4,-2,-21) \\ \\ \vec{u}=(1,-1,0) \\ \\ \vec{v}=(2,0,7) \\ \\ \\ \\ \vec{w}= \alpha \vec{u}+ \beta \vec{v} \\ \\ \\ (-4,-2,-21)= \alpha (1,-1,0)~+~ \beta (2,0,7) \\ \\ \text{Aplica a distributiva do alpha no vetor u, e beta no vetor v } \\ \\ (-4,-2,-21)= (\alpha,-\alpha,0\alpha)~+~ (2\beta,0\beta,7\beta) \\ \\ \\ \text{Agora e so montar o sistema e encontrar o valor de alpha e beta} \displaystyle \vec{w}=(-4,-2,-21) \\ \\ \vec{u}=(1,-1,0) \\ \\ \vec{v}=(2,0,7) \\ \\ \\ \\ \vec{w}= \alpha \vec{u}+ \beta \vec{v} \\ \\ \\ (-4,-2,-21)= \alpha (1,-1,0)~+~ \beta (2,0,7) \\ \\ \text{Aplica a distributiva do alpha no vetor u, e beta no vetor v } \\ \\ (-4,-2,-21)= (\alpha,-\alpha,0\alpha)~+~ (2\beta,0\beta,7\beta) \\ \\ \\ \text{Agora e so montar o sistema e encontrar o valor de alpha e beta}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cvec%7Bw%7D%3D%28-4%2C-2%2C-21%29+%5C%5C++%5C%5C+%5Cvec%7Bu%7D%3D%281%2C-1%2C0%29+%5C%5C++%5C%5C++%5Cvec%7Bv%7D%3D%282%2C0%2C7%29+%5C%5C++%5C%5C++%5C%5C++%5C%5C+%5Cvec%7Bw%7D%3D+%5Calpha+%5Cvec%7Bu%7D%2B+%5Cbeta+%5Cvec%7Bv%7D+%5C%5C++%5C%5C++%5C%5C+%28-4%2C-2%2C-21%29%3D+%5Calpha+%281%2C-1%2C0%29%7E%2B%7E+%5Cbeta+%282%2C0%2C7%29+%5C%5C++%5C%5C++%5Ctext%7BAplica+a+distributiva+do+alpha+no+vetor+u%2C+e+beta+no+vetor+v+%7D+%5C%5C++%5C%5C+%28-4%2C-2%2C-21%29%3D++%28%5Calpha%2C-%5Calpha%2C0%5Calpha%29%7E%2B%7E+%282%5Cbeta%2C0%5Cbeta%2C7%5Cbeta%29++%5C%5C++%5C%5C++%5C%5C+%5Ctext%7BAgora+e+so+montar+o+sistema+e+encontrar+o+valor+de+alpha+e+beta%7D)
![\alpha ~+~2 \beta =-4 \\ - \alpha ~+~0 \beta =-2 \\ 0 \alpha +7 \beta =-21 \\ \\ \\ \text{Esta facil encontrar os valores de alpha e beta... Veja a segunda}\\\text{equacao, temos somente o alpha... e na terceira equacao, so o beta}\\\text{Pegando a segunda equacao para encontrar o valor de alpha} \\ \\ \\ - \alpha =-2~~~~~~~~~~~\cdot(-1)~~~~~ ~~~ ~\text{Multiplica por -1 para tirar o negativo} \\ \\ \boxed{\alpha =2} \\ \\ \\ \text{Pegando a terceira equacao para encontrar o valor de beta} \alpha ~+~2 \beta =-4 \\ - \alpha ~+~0 \beta =-2 \\ 0 \alpha +7 \beta =-21 \\ \\ \\ \text{Esta facil encontrar os valores de alpha e beta... Veja a segunda}\\\text{equacao, temos somente o alpha... e na terceira equacao, so o beta}\\\text{Pegando a segunda equacao para encontrar o valor de alpha} \\ \\ \\ - \alpha =-2~~~~~~~~~~~\cdot(-1)~~~~~ ~~~ ~\text{Multiplica por -1 para tirar o negativo} \\ \\ \boxed{\alpha =2} \\ \\ \\ \text{Pegando a terceira equacao para encontrar o valor de beta}](https://tex.z-dn.net/?f=+%5Calpha+%7E%2B%7E2+%5Cbeta+%3D-4+%5C%5C++-+%5Calpha+%7E%2B%7E0+%5Cbeta+%3D-2+%5C%5C+0+%5Calpha+%2B7+%5Cbeta+%3D-21+%5C%5C++%5C%5C++%5C%5C+%5Ctext%7BEsta+facil+encontrar+os+valores+de+alpha+e+beta...+Veja+a+segunda%7D%5C%5C%5Ctext%7Bequacao%2C+temos+somente+o+alpha...+e+na+terceira+equacao%2C+so+o+beta%7D%5C%5C%5Ctext%7BPegando+a+segunda+equacao+para+encontrar+o+valor+de+alpha%7D+%5C%5C++%5C%5C++%5C%5C+-+%5Calpha+%3D-2%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%7E%5Ccdot%28-1%29%7E%7E%7E%7E%7E+%7E%7E%7E+%7E%5Ctext%7BMultiplica+por+-1+para+tirar+o+negativo%7D+%5C%5C++%5C%5C++%5Cboxed%7B%5Calpha+%3D2%7D+%5C%5C++%5C%5C++%5C%5C+%5Ctext%7BPegando+a+terceira+equacao+para+encontrar+o+valor+de+beta%7D+)
![7 \beta =-21 \\ \\ \beta =- \frac{21}{7} \\ \\ \boxed{\beta =-3} 7 \beta =-21 \\ \\ \beta =- \frac{21}{7} \\ \\ \boxed{\beta =-3}](https://tex.z-dn.net/?f=7+%5Cbeta+%3D-21+%5C%5C++%5C%5C++%5Cbeta+%3D-+%5Cfrac%7B21%7D%7B7%7D++%5C%5C++%5C%5C+++%5Cboxed%7B%5Cbeta+%3D-3%7D)
![\text{Entao podemos escrever o vetor w como combinacao linear dos vetores}\\\text{u e v} \\ \\ \\ \boxed{\vec{w}= 2 \vec{u} -3 \vec{v}}~~~~~~\longleftarrow \text{Esta e a resposta final} \text{Entao podemos escrever o vetor w como combinacao linear dos vetores}\\\text{u e v} \\ \\ \\ \boxed{\vec{w}= 2 \vec{u} -3 \vec{v}}~~~~~~\longleftarrow \text{Esta e a resposta final}](https://tex.z-dn.net/?f=%5Ctext%7BEntao+podemos+escrever+o+vetor+w+como+combinacao+linear+dos+vetores%7D%5C%5C%5Ctext%7Bu+e+v%7D+%5C%5C++%5C%5C++%5C%5C+%5Cboxed%7B%5Cvec%7Bw%7D%3D+2+%5Cvec%7Bu%7D+-3+%5Cvec%7Bv%7D%7D%7E%7E%7E%7E%7E%7E%5Clongleftarrow+%5Ctext%7BEsta+e+a+resposta+final%7D)
Agora vamos comprovar...
![(-4,-2,-21)= 2 (1,-1,0)~-~ 3 (2,0,7) \\ \\ \text{Aplica as distributivas} \\ \\ \\ (-4,-2,-21)= (2,-2,0)~-~ (6,0,21) \\ \\ \text{Efetua a subtracao} \\ \\ \\ (-4,-2,-21)= (2-6,~-2-0,~0-21) \\ \\ \\\boxed{ (-4,-2,-21)= (-4,-2,-21)} \\ \\ \\ \text{Comprovado... O vetor w pode ser escrito como combinacao linea }\\\text{de u e v} (-4,-2,-21)= 2 (1,-1,0)~-~ 3 (2,0,7) \\ \\ \text{Aplica as distributivas} \\ \\ \\ (-4,-2,-21)= (2,-2,0)~-~ (6,0,21) \\ \\ \text{Efetua a subtracao} \\ \\ \\ (-4,-2,-21)= (2-6,~-2-0,~0-21) \\ \\ \\\boxed{ (-4,-2,-21)= (-4,-2,-21)} \\ \\ \\ \text{Comprovado... O vetor w pode ser escrito como combinacao linea }\\\text{de u e v}](https://tex.z-dn.net/?f=%28-4%2C-2%2C-21%29%3D+2+%281%2C-1%2C0%29%7E-%7E+3+%282%2C0%2C7%29+%5C%5C++%5C%5C++%5Ctext%7BAplica+as+distributivas%7D+%5C%5C++%5C%5C++%5C%5C+%28-4%2C-2%2C-21%29%3D++%282%2C-2%2C0%29%7E-%7E++%286%2C0%2C21%29+%5C%5C++%5C%5C+++%5Ctext%7BEfetua+a+subtracao%7D+%5C%5C++%5C%5C++%5C%5C+%28-4%2C-2%2C-21%29%3D++%282-6%2C%7E-2-0%2C%7E0-21%29+%5C%5C++%5C%5C++%5C%5C%5Cboxed%7B+%28-4%2C-2%2C-21%29%3D++%28-4%2C-2%2C-21%29%7D+%5C%5C++%5C%5C++%5C%5C+%5Ctext%7BComprovado...+O+vetor+w+pode+ser+escrito+como+combinacao+linea+%7D%5C%5C%5Ctext%7Bde+u+e+v%7D)
____________________________________________________________
Caso não consiga visualizar, tente abrir pelo navegador:
https://brainly.com.br/tarefa/8646169
____________________________________________________________
Agora vamos comprovar...
Perguntas interessantes
História,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás