Matemática, perguntado por patrickdallagnol, 1 ano atrás

Dado log2 ∼ = 0,3 obter o valor aproximado de:
(a) log5;
(b) log20;
(c) log√5;
(d) log3(27×9);
(e) log2(32 4 );
(f) log2(82).

Soluções para a tarefa

Respondido por GeBEfte
3

a)\\log\;5\\\\log\frac{10}{2}\\\\log 10-log2\\\\1-0,3\\\\0,7


b)\\log20\\\\log(2\;.\;10)\\\\log2+log10\\\\0,3+1\\\\1,3


c)\\log\sqrt{5}\\\\log5^{\frac{1}{2}}\\\\\frac{1}{2}log5\\\\\frac{1}{2}log\frac{10}{2}\\\\\frac{1}{2}(log10-log2)\\\\\frac{1}{2}(1-0,3)\\\\\frac{1}{2}.0,7\\\\0,35


d)\\log_{_3}(27\;.\9)=x\\\\log_{_3}(27\;.\9)=x\\\\(27\;.\;9)=3^x\\\\3^3\;.\;3^2=3^x\\\\3^{3+2}=3^x\\\\3^5=3^x\\\\x = 5


e)\\log_{_2}(32\;.\;4)=x\\\\32\;.\;4=2^x\\\\2^5\;.\;2^2=2^x\\\\2^{5+2}=2^x\\\\2^{7}=2^x\\\\x = 7


f)\\log_{_2}8\;.\;2=x\\\\8\;.\;2=2^x\\\\2^3\;.\;2^1=2^x\\\\2^{3+1}=2^x\\\\2^4=2^x\\\\x=4

Perguntas interessantes