Matemática, perguntado por narutodaniel201, 1 ano atrás

dadas:log 2=0,301, log 3 = 0,477 e log 5 = 0,65 , calcule .

a) log 32=
b) log  \sqrt[4]{125} =
c) log  \frac{25}{6} =
d) log 114 =

Soluções para a tarefa

Respondido por Usuário anônimo
2
a)
\log32=log2^5=5log2=5(0,301)=1,505

____________________________________________________________________________

b)
log \sqrt[4]{125} =log \sqrt[4]{5^3} =log 5^{ \frac{3}{4} } = \frac{3}{4} log5= \\  \\  \frac{3}{4} (0,65)= \frac{1,95}{4} =0,4875

____________________________________________________________________________

c)
log \frac{25}{6} =log25-log6= \\ \\  log5^2-(log2+log3)=

2log5-(0,301+0,477)= \\  \\ 2(0,65)-(0,778)= \\  \\ 1,30-0,778=0,522

____________________________________________________________________________

d)
log144=log2^4.3^2=4log2+2log3= \\  \\ 4(0,301)+2(0,477)= \\  \\ 1,204+0,954=2,158

Usuário anônimo: Se tiver alguma conta errada, me avise.
Usuário anônimo: Valeu!
Respondido por Usuário anônimo
0

Explicação passo-a-passo:

Lembre-se que:

\sf log_{b}~(a\cdot c)=log_{b}~a+log_{b}~c

\sf log_{b}~(a\div c)=log_{b}~a-log_{b}~c

\sf log_{b}~a^m=m\cdot log_{b}~a

\sf \sqrt[c]{a^b}=a^{\frac{b}{c}}

a)

\sf log~32=log~2^5

\sf log~32=5\cdot log~2

\sf log~32=5\cdot0,301

\sf \red{log~32=1,505}

b)

\sf log~\sqrt[4]{125}=log~\sqrt[4]{5^3}

\sf log~\sqrt[4]{125}=log~5^{\frac{3}{4}}

\sf log~\sqrt[4]{125}=\dfrac{3}{4}\cdot log~5

\sf log~\sqrt[4]{125}=\dfrac{3}{4}\cdot0,65

\sf log~\sqrt[4]{125}=\dfrac{1,95}{4}

\sf \red{log~\sqrt[4]{125}=0,4875}

c)

\sf log~\Big(\dfrac{25}{6}\Big)=log~25-log~6

\sf log~\Big(\dfrac{25}{6}\Big)=log~5^2-log~(2\cdot3)

\sf log~\Big(\dfrac{25}{6}\Big)=2\cdot log~5-(log~2+log~3)

\sf log~\Big(\dfrac{25}{6}\Big)=2\cdot log~5-log~2-log~3

\sf log~\Big(\dfrac{25}{6}\Big)=2\cdot0,65-0,301-0,477

\sf log~\Big(\dfrac{25}{6}\Big)=1,3-0,301-0,477

\sf \red{log~\Big(\dfrac{25}{6}\Big)=0,522}

d)

\sf log~144=log~(2^4\cdot3^2)

\sf log~144=log~2^4+log~3^2

\sf log~144=4\cdot log~2+2\cdot log~3

\sf log~144=4\cdot0,301+2\cdot0,477

\sf log~144=1,204+0,954

\sf \red{log~144=2,158}

Perguntas interessantes