Dadas as retas de equações x+y-1=0 , mx+y-2=0 e x+my-3=0 , determine m para que as retas sejam concorrentes num mesmo ponto, R: 4
Agradeço desde já.
Soluções para a tarefa
Respondido por
10
Isolando os Y, temos:
1º equação: y = 1 - x
2º equação: y= 2 - mx
3º equação: y = (3-x) /m (lembre-se da troca de sinais)
Obs* Sempre isole, ficará mais fácil de você resolver determinada questão, depois você poderá substituir uma pela outra como faremos agora. Como se fosse um sistema de equação pelo método da substituição, lembra?
Se na questão pede o M para que todas estejam no mesmo ponto, igualamos:
1 - x =2- mx
1- 2 = - mx + x
- 1 = x (-m+1)
1 - x = (3-x)/m
m - 3 = - x + m x
Agora, resolvendo o restante, teremos:
-1=-m+3
-1-3=-m
M = 4.
1º equação: y = 1 - x
2º equação: y= 2 - mx
3º equação: y = (3-x) /m (lembre-se da troca de sinais)
Obs* Sempre isole, ficará mais fácil de você resolver determinada questão, depois você poderá substituir uma pela outra como faremos agora. Como se fosse um sistema de equação pelo método da substituição, lembra?
Se na questão pede o M para que todas estejam no mesmo ponto, igualamos:
1 - x =2- mx
1- 2 = - mx + x
- 1 = x (-m+1)
1 - x = (3-x)/m
m - 3 = - x + m x
Agora, resolvendo o restante, teremos:
-1=-m+3
-1-3=-m
M = 4.
Perguntas interessantes
Física,
9 meses atrás
Inglês,
9 meses atrás
Física,
1 ano atrás
História,
1 ano atrás
Sociologia,
1 ano atrás