Dadas as matrizes abaixo determine:
a) det (AxB) b) det (BxA)
Matriz 3x3 A= 5 -1 -2
0 4 3
1 8 3
e a outra matriz 3x3
B= 0 1 2
-3 -1 4
2 -2 5
AndréMMarques:
Todas as duas matrizes são de 3x3?
Soluções para a tarefa
Respondido por
14
Resposta do det AB:
Antes de achar o determinante de AB, é necessário achar o produto AB.
O Produto AB:
![A= \left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right] \\ \\ \\ B= \left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right] \\ \\ \\ \\ \left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right]*\left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right]= A= \left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right] \\ \\ \\ B= \left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right] \\ \\ \\ \\ \left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right]*\left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right]=](https://tex.z-dn.net/?f=A%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26amp%3B-1%26amp%3B-2%5C%5C0%26amp%3B4%26amp%3B3%5C%5C1%26amp%3B8%26amp%3B3%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+%5C%5C+B%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B1%26amp%3B2%5C%5C-3%26amp%3B-1%26amp%3B4%5C%5C2%26amp%3B-2%26amp%3B5%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+%5C%5C+%5C%5C+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26amp%3B-1%26amp%3B-2%5C%5C0%26amp%3B4%26amp%3B3%5C%5C1%26amp%3B8%26amp%3B3%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B1%26amp%3B2%5C%5C-3%26amp%3B-1%26amp%3B4%5C%5C2%26amp%3B-2%26amp%3B5%5Cend%7Barray%7D%5Cright%5D%3D)
![\\ \\ \\ 1- \left[\begin{array}{ccc}5*0+(-1)*(-3)+(-2)*2\\0*0+4*(-3)+3*2\\1*0+8*(-3)+3*2\end{array}\right] \\ \\ 2- \left[\begin{array}{ccc}5*1+(-1)*(-1)+(-2)*(-2)\\0*1+4*(-1)+3*(-2)\\1*1+8*(-1)+3*(-2)\end{array}\right] \\ \\ 3- \left[\begin{array}{ccc}5*2+(-1)*4+(-2)*5\\0*2+4*4+3*5\\1*2+8*4+3*5\end{array}\right] \\ \\ = \\ \\
\\ \\ \\ 1- \left[\begin{array}{ccc}5*0+(-1)*(-3)+(-2)*2\\0*0+4*(-3)+3*2\\1*0+8*(-3)+3*2\end{array}\right] \\ \\ 2- \left[\begin{array}{ccc}5*1+(-1)*(-1)+(-2)*(-2)\\0*1+4*(-1)+3*(-2)\\1*1+8*(-1)+3*(-2)\end{array}\right] \\ \\ 3- \left[\begin{array}{ccc}5*2+(-1)*4+(-2)*5\\0*2+4*4+3*5\\1*2+8*4+3*5\end{array}\right] \\ \\ = \\ \\](https://tex.z-dn.net/?f=%5C%5C+%5C%5C+%5C%5C+1-+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2A0%2B%28-1%29%2A%28-3%29%2B%28-2%29%2A2%5C%5C0%2A0%2B4%2A%28-3%29%2B3%2A2%5C%5C1%2A0%2B8%2A%28-3%29%2B3%2A2%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+2-+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2A1%2B%28-1%29%2A%28-1%29%2B%28-2%29%2A%28-2%29%5C%5C0%2A1%2B4%2A%28-1%29%2B3%2A%28-2%29%5C%5C1%2A1%2B8%2A%28-1%29%2B3%2A%28-2%29%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+3-+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2A2%2B%28-1%29%2A4%2B%28-2%29%2A5%5C%5C0%2A2%2B4%2A4%2B3%2A5%5C%5C1%2A2%2B8%2A4%2B3%2A5%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+%3D+%5C%5C+%5C%5C%0A)
obs: como a matriz ficou muito grande para colocar no editor de fórmulas do site, tive que dividir. Os números representam a coluna a que pertencem; ou seja, se você juntar 1, 2 e 3, terá a matriz em sua forma total. E eu farei isso tanto para essa matriz em questão, AB, quanto para a próxima, BA, Ok?
![MatrizAB \left[\begin{array}{ccc}0+3-4&5+1+4&10-4-10\\0-12+6&0-4-6&2+16+15\\0-24+6&1-8-6&2+32+15\end{array}\right] = \\ \\ \\ AB= \left[\begin{array}{ccc}-1&10&-4\\-6&-10&33\\-18&-13&49\end{array}\right]
MatrizAB \left[\begin{array}{ccc}0+3-4&5+1+4&10-4-10\\0-12+6&0-4-6&2+16+15\\0-24+6&1-8-6&2+32+15\end{array}\right] = \\ \\ \\ AB= \left[\begin{array}{ccc}-1&10&-4\\-6&-10&33\\-18&-13&49\end{array}\right]](https://tex.z-dn.net/?f=MatrizAB+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%2B3-4%26amp%3B5%2B1%2B4%26amp%3B10-4-10%5C%5C0-12%2B6%26amp%3B0-4-6%26amp%3B2%2B16%2B15%5C%5C0-24%2B6%26amp%3B1-8-6%26amp%3B2%2B32%2B15%5Cend%7Barray%7D%5Cright%5D+%3D+%5C%5C+%5C%5C+%5C%5C+AB%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26amp%3B10%26amp%3B-4%5C%5C-6%26amp%3B-10%26amp%3B33%5C%5C-18%26amp%3B-13%26amp%3B49%5Cend%7Barray%7D%5Cright%5D%0A)
Agora que a matriz AB foi encontrada, descobrirei o det AB pela regra de Saurrus:
![detAB= \left[\begin{array}{ccc}-1&10&-4\\-6&-10&33\\-18&-13&49\end{array}\right] \left\begin{array}{cc}-1&10&-6&-10\\-18&-13\\\end{array}\right \\ \\ \\ -(-18)*(-10)*(-4)=720 \\ -(-13)*33*(-1)=-429 \\ -49*(-6)*10=2940 \\ \\ \\ -4*(-6)*(-13)=-312 \\ 10*33*(-18)=-5940 \\ -1*(-10)*49=490 \\ \\ detAB=720-429+2940-312-5940+490=-2531 \\ \\ detAB=-2531 detAB= \left[\begin{array}{ccc}-1&10&-4\\-6&-10&33\\-18&-13&49\end{array}\right] \left\begin{array}{cc}-1&10&-6&-10\\-18&-13\\\end{array}\right \\ \\ \\ -(-18)*(-10)*(-4)=720 \\ -(-13)*33*(-1)=-429 \\ -49*(-6)*10=2940 \\ \\ \\ -4*(-6)*(-13)=-312 \\ 10*33*(-18)=-5940 \\ -1*(-10)*49=490 \\ \\ detAB=720-429+2940-312-5940+490=-2531 \\ \\ detAB=-2531](https://tex.z-dn.net/?f=detAB%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26amp%3B10%26amp%3B-4%5C%5C-6%26amp%3B-10%26amp%3B33%5C%5C-18%26amp%3B-13%26amp%3B49%5Cend%7Barray%7D%5Cright%5D+%5Cleft%5Cbegin%7Barray%7D%7Bcc%7D-1%26amp%3B10%26amp%3B-6%26amp%3B-10%5C%5C-18%26amp%3B-13%5C%5C%5Cend%7Barray%7D%5Cright+%5C%5C+%5C%5C+%5C%5C+-%28-18%29%2A%28-10%29%2A%28-4%29%3D720+%5C%5C+-%28-13%29%2A33%2A%28-1%29%3D-429+%5C%5C+-49%2A%28-6%29%2A10%3D2940+%5C%5C+%5C%5C+%5C%5C+-4%2A%28-6%29%2A%28-13%29%3D-312+%5C%5C+10%2A33%2A%28-18%29%3D-5940+%5C%5C+-1%2A%28-10%29%2A49%3D490+%5C%5C+%5C%5C+detAB%3D720-429%2B2940-312-5940%2B490%3D-2531+%5C%5C+%5C%5C+detAB%3D-2531)
Resposta do det BA:
![A= \left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right] \\ \\ \\ B= \left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right] \\ \\ \\ \\BA= \left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right]*\left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right] \\ \\ A= \left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right] \\ \\ \\ B= \left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right] \\ \\ \\ \\BA= \left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right]*\left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right] \\ \\](https://tex.z-dn.net/?f=A%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26amp%3B-1%26amp%3B-2%5C%5C0%26amp%3B4%26amp%3B3%5C%5C1%26amp%3B8%26amp%3B3%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+%5C%5C+B%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B1%26amp%3B2%5C%5C-3%26amp%3B-1%26amp%3B4%5C%5C2%26amp%3B-2%26amp%3B5%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+%5C%5C+%5C%5CBA%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B1%26amp%3B2%5C%5C-3%26amp%3B-1%26amp%3B4%5C%5C2%26amp%3B-2%26amp%3B5%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26amp%3B-1%26amp%3B-2%5C%5C0%26amp%3B4%26amp%3B3%5C%5C1%26amp%3B8%26amp%3B3%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+)
![BA= \left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right]*\left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right] \\ \\ 1- \left[\begin{array}{ccc}0*5+1*0+2*1&\\-3*5+(-1)*0+4*1\\2*5+(-2)*0+5*1\end{array}\right] \\ \\ 2- \left[\begin{array}{ccc}0*(-1)+1*4+2*8\\-3*(-1)+(-1)*4+4*8\\2*(-1)+(-2)*4+5*8\end{array}\right] \\ \\ 3-\left[\begin{array}{ccc}0*(-2)+1*3+2*3\\-3*(-2)+(-1)*3+4*3\\2*(-2)+(-2)*3+5*3\end{array}\right] BA= \left[\begin{array}{ccc}0&1&2\\-3&-1&4\\2&-2&5\end{array}\right]*\left[\begin{array}{ccc}5&-1&-2\\0&4&3\\1&8&3\end{array}\right] \\ \\ 1- \left[\begin{array}{ccc}0*5+1*0+2*1&\\-3*5+(-1)*0+4*1\\2*5+(-2)*0+5*1\end{array}\right] \\ \\ 2- \left[\begin{array}{ccc}0*(-1)+1*4+2*8\\-3*(-1)+(-1)*4+4*8\\2*(-1)+(-2)*4+5*8\end{array}\right] \\ \\ 3-\left[\begin{array}{ccc}0*(-2)+1*3+2*3\\-3*(-2)+(-1)*3+4*3\\2*(-2)+(-2)*3+5*3\end{array}\right]](https://tex.z-dn.net/?f=BA%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B1%26amp%3B2%5C%5C-3%26amp%3B-1%26amp%3B4%5C%5C2%26amp%3B-2%26amp%3B5%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26amp%3B-1%26amp%3B-2%5C%5C0%26amp%3B4%26amp%3B3%5C%5C1%26amp%3B8%26amp%3B3%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+1-+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%2A5%2B1%2A0%2B2%2A1%26amp%3B%5C%5C-3%2A5%2B%28-1%29%2A0%2B4%2A1%5C%5C2%2A5%2B%28-2%29%2A0%2B5%2A1%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+2-+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%2A%28-1%29%2B1%2A4%2B2%2A8%5C%5C-3%2A%28-1%29%2B%28-1%29%2A4%2B4%2A8%5C%5C2%2A%28-1%29%2B%28-2%29%2A4%2B5%2A8%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+3-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%2A%28-2%29%2B1%2A3%2B2%2A3%5C%5C-3%2A%28-2%29%2B%28-1%29%2A3%2B4%2A3%5C%5C2%2A%28-2%29%2B%28-2%29%2A3%2B5%2A3%5Cend%7Barray%7D%5Cright%5D+)
![Matriz AB \left[\begin{array}{ccc}0+0+2&0+4+16&0+3+6\\-15+0+4&3-4+32&6-3+12\\10+0+5&-2-8+40&-4-6+15\end{array}\right] = \\ \\ \\AB= \left[\begin{array}{ccc}2&20&9\\-11&31&15\\15&30&5\end{array}\right] \\ \\ \\ DetBA=\left[\begin{array}{ccc}2&20&9\\-11&31&15\\15&30&5\end{array}\right] \left\begin{array}{ccc}2&20\\-11&31\\15&30\end{array}\right \\ \\ \\ Matriz AB \left[\begin{array}{ccc}0+0+2&0+4+16&0+3+6\\-15+0+4&3-4+32&6-3+12\\10+0+5&-2-8+40&-4-6+15\end{array}\right] = \\ \\ \\AB= \left[\begin{array}{ccc}2&20&9\\-11&31&15\\15&30&5\end{array}\right] \\ \\ \\ DetBA=\left[\begin{array}{ccc}2&20&9\\-11&31&15\\15&30&5\end{array}\right] \left\begin{array}{ccc}2&20\\-11&31\\15&30\end{array}\right \\ \\ \\](https://tex.z-dn.net/?f=Matriz+AB+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%2B0%2B2%26amp%3B0%2B4%2B16%26amp%3B0%2B3%2B6%5C%5C-15%2B0%2B4%26amp%3B3-4%2B32%26amp%3B6-3%2B12%5C%5C10%2B0%2B5%26amp%3B-2-8%2B40%26amp%3B-4-6%2B15%5Cend%7Barray%7D%5Cright%5D+%3D+%5C%5C++%5C%5C+%5C%5CAB%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B20%26amp%3B9%5C%5C-11%26amp%3B31%26amp%3B15%5C%5C15%26amp%3B30%26amp%3B5%5Cend%7Barray%7D%5Cright%5D+%5C%5C++%5C%5C+%5C%5C+DetBA%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B20%26amp%3B9%5C%5C-11%26amp%3B31%26amp%3B15%5C%5C15%26amp%3B30%26amp%3B5%5Cend%7Barray%7D%5Cright%5D+%5Cleft%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B20%5C%5C-11%26amp%3B31%5C%5C15%26amp%3B30%5Cend%7Barray%7D%5Cright+%5C%5C+%5C%5C+%5C%5C+)

Com isso, sei que o detAB= -2531, e o detBA= -2145
Antes de achar o determinante de AB, é necessário achar o produto AB.
O Produto AB:
obs: como a matriz ficou muito grande para colocar no editor de fórmulas do site, tive que dividir. Os números representam a coluna a que pertencem; ou seja, se você juntar 1, 2 e 3, terá a matriz em sua forma total. E eu farei isso tanto para essa matriz em questão, AB, quanto para a próxima, BA, Ok?
Agora que a matriz AB foi encontrada, descobrirei o det AB pela regra de Saurrus:
Resposta do det BA:
Com isso, sei que o detAB= -2531, e o detBA= -2145
Perguntas interessantes
Geografia,
1 ano atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Química,
1 ano atrás