dadas as matrizes A = (3 5 1 2 ) e B = ( 3 2 1 1 ) , calcule A .B -¹
Soluções para a tarefa
Resposta:
3 2 * a b = 1 0
1 1 c d 0 1
3a+2c=1 ==>-3c+2c=1 ==>c=-1
a+c=0 ==>a=-c =1 =+>c=-1
3b+2d=0 ==>b=-2d/3 =-2*3/3=-2
b+d=1 =+>-2d/3+d=1 ==>d=3
B⁻¹=
1 -2
-1 3
A* B⁻¹=
3 5 * 1 -2
1 2 -1 3
3-5 -6+15
1-2 -2+6
=
-2 9
-1 4
Resposta:
Calculando a inversa de B:
3a + 2c = 1 3b + 2d = 0
1a + 1c = 0 (-3) 1b + 1 d =1 )-3)
--------------------------------------------------------------------------
-3a - 3c = 0 -3b - 3d = -3
3a + 2c = 1 3b + 2d = 0
0 - c = 1 0 - d = -3
c = -1 d = 3
-----------------------------------------------------------------------------------------------
3a + 2c = 1 3b + 2d = 0
3a + 2.(-1) = 1 3b + 2.3 = 0
3a - 2 = 1 3b + 6 = 0
3a = 1+2 3b = -6
3a = 3 b = -6 : 3
a = 3:3 b = -2
a = 1
B⁻¹ =
----------------------------------------------------------------------------------------------------
A . B⁻¹ =
A.B⁻¹=