Dadas as funções f(x) = -x² e g(x) = 2x um dos pontos de intersecção entre as funções f e g é:
a) (0, 2)
b) (-2, -4)
c) (2, 4)
d) (0, -2)
e) (-2, 4)
Soluções para a tarefa
Vamos lá
Dadas as funções f(x) = -x² e g(x) = 2x um dos pontos de intersecção
entre as funções f e g é:
-x² = 2x
x² + 2x = 0
d² = 4 , d = 2
x1 = (-2 + 2)/2 = 0
x2 = (-2 - 2)/2 = -2
S = (0,0) , (-2, -4) (B)
Um dos pontos de intersecção entre as funções f e g é (-2,-4), ou seja, letra b
Funções quadráticas
Funções quadráticas são funções polinomiais de segundo grau, dentro ao gráfico xy representa uma parábola e representa a seguinte estrutura:
ax² + bx + c = 0
Para responder essa questão, é necessário igualar as equação para encontrar o ponto em comum entre as duas funções:
-x² -2x = 0
Agora, para encontrar as raízes, basta aplicar Bháskara:
Substituindo os dados:
Para obter os pontos, basta substituir na equação de segundo grau (vamos usar f(x) para encontrar):
Para x = -2:
f(-2) = -(-2)² = -4
Para x =0
f(0) = 0
Para aprender mais sobre Equações Quadráticas, acesse: https://brainly.com.br/tarefa/818495
#SPJ2