Dadas as funções f(x)= x+1/x-2, g(x)= 2x-1/x+2 e h(x)=5, resolva a equação f(x) +g(x)=h(x)
Soluções para a tarefa
Respondido por
11
Olá.
Basta substituirmos os valores de F(x), G(x) e H(x).
Vamos aos cálculos:
![\mathsf{F(x)+G(x)=H(x)}\\\\
\mathsf{\dfrac{x+1}{x-2}+\dfrac{2x-1}{x+2}=5}\\\\\\
\mathsf{\dfrac{(x+1)(x+2)+(2x-1)(x-2)}{(x-2)(x+2)}=5}\\\\\\
\mathsf{\dfrac{(x^2+2x+x+2)+(2x^2-4x-x+2)}{(x^2+2x-2x-4)}-5=0}\\\\\\
\mathsf{\dfrac{x^2+2x+x+2+2x^2-4x-x+2-5(x^2-4)}{(x^2-4)}=0}\\\\\\
\mathsf{\dfrac{x^2+2x^2+2x+x-4x-x+2+2-(5x^2-20)}{(x^2-4)}=0}\\\\\\
\mathsf{3x^2-2x+4-(5x^2-20)=0\cdot(x^2-4)}\\\\\\
\mathsf{3x^2-2x+4-5x^2+20=0}\\\\\\
\mathsf{3x^2-5x^2-2x+4+20=0}\\\\\\
\mathsf{-2x^2-2x+24=0}
\mathsf{F(x)+G(x)=H(x)}\\\\
\mathsf{\dfrac{x+1}{x-2}+\dfrac{2x-1}{x+2}=5}\\\\\\
\mathsf{\dfrac{(x+1)(x+2)+(2x-1)(x-2)}{(x-2)(x+2)}=5}\\\\\\
\mathsf{\dfrac{(x^2+2x+x+2)+(2x^2-4x-x+2)}{(x^2+2x-2x-4)}-5=0}\\\\\\
\mathsf{\dfrac{x^2+2x+x+2+2x^2-4x-x+2-5(x^2-4)}{(x^2-4)}=0}\\\\\\
\mathsf{\dfrac{x^2+2x^2+2x+x-4x-x+2+2-(5x^2-20)}{(x^2-4)}=0}\\\\\\
\mathsf{3x^2-2x+4-(5x^2-20)=0\cdot(x^2-4)}\\\\\\
\mathsf{3x^2-2x+4-5x^2+20=0}\\\\\\
\mathsf{3x^2-5x^2-2x+4+20=0}\\\\\\
\mathsf{-2x^2-2x+24=0}](https://tex.z-dn.net/?f=%5Cmathsf%7BF%28x%29%2BG%28x%29%3DH%28x%29%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7Bx%2B1%7D%7Bx-2%7D%2B%5Cdfrac%7B2x-1%7D%7Bx%2B2%7D%3D5%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7B%28x%2B1%29%28x%2B2%29%2B%282x-1%29%28x-2%29%7D%7B%28x-2%29%28x%2B2%29%7D%3D5%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7B%28x%5E2%2B2x%2Bx%2B2%29%2B%282x%5E2-4x-x%2B2%29%7D%7B%28x%5E2%2B2x-2x-4%29%7D-5%3D0%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7Bx%5E2%2B2x%2Bx%2B2%2B2x%5E2-4x-x%2B2-5%28x%5E2-4%29%7D%7B%28x%5E2-4%29%7D%3D0%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%5Cdfrac%7Bx%5E2%2B2x%5E2%2B2x%2Bx-4x-x%2B2%2B2-%285x%5E2-20%29%7D%7B%28x%5E2-4%29%7D%3D0%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B3x%5E2-2x%2B4-%285x%5E2-20%29%3D0%5Ccdot%28x%5E2-4%29%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B3x%5E2-2x%2B4-5x%5E2%2B20%3D0%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B3x%5E2-5x%5E2-2x%2B4%2B20%3D0%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B-2x%5E2-2x%2B24%3D0%7D%0A)
Chegamos em uma equação de 2° grau. Para resolvermos e encontrar as duas raízes possíveis, vamos usar Bhaskara. Vamos aos cálculos.
Usaremos a forma ax² + bx + c = 0 para encontrar os coeficientes.
![\mathsf{x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}\\\\\\
\mathsf{x=\dfrac{-(-2)\pm\sqrt{(-2)^2-4\cdot(-2)\cdot24}}{2(-2)}}\\\\\\
\mathsf{x=\dfrac{+2\pm\sqrt{4-4\cdot(-48)}}{-4}}\\\\\\
\mathsf{x=\dfrac{+2\pm\sqrt{4+192}}{-4}}\\\\\\
\mathsf{x=\dfrac{+2\pm\sqrt{196}}{-4}}\\\\\\
\mathsf{x=\dfrac{+2\pm14}{-4}} \mathsf{x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}\\\\\\
\mathsf{x=\dfrac{-(-2)\pm\sqrt{(-2)^2-4\cdot(-2)\cdot24}}{2(-2)}}\\\\\\
\mathsf{x=\dfrac{+2\pm\sqrt{4-4\cdot(-48)}}{-4}}\\\\\\
\mathsf{x=\dfrac{+2\pm\sqrt{4+192}}{-4}}\\\\\\
\mathsf{x=\dfrac{+2\pm\sqrt{196}}{-4}}\\\\\\
\mathsf{x=\dfrac{+2\pm14}{-4}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%3D%5Cdfrac%7B-b%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7Bx%3D%5Cdfrac%7B-%28-2%29%5Cpm%5Csqrt%7B%28-2%29%5E2-4%5Ccdot%28-2%29%5Ccdot24%7D%7D%7B2%28-2%29%7D%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7Bx%3D%5Cdfrac%7B%2B2%5Cpm%5Csqrt%7B4-4%5Ccdot%28-48%29%7D%7D%7B-4%7D%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7Bx%3D%5Cdfrac%7B%2B2%5Cpm%5Csqrt%7B4%2B192%7D%7D%7B-4%7D%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7Bx%3D%5Cdfrac%7B%2B2%5Cpm%5Csqrt%7B196%7D%7D%7B-4%7D%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7Bx%3D%5Cdfrac%7B%2B2%5Cpm14%7D%7B-4%7D%7D)
Vamos agora encontrar as duas raízes possíveis.
![\mathsf{x'=\dfrac{+2+14}{-4}}\\\\\\
\mathsf{x'=\dfrac{16}{-4}}\\\\
\boxed{\mathsf{x'=-4}}\\\\\\
\\\mathsf{x''=\dfrac{+2-14}{-4}}\\\\\\
\\\mathsf{x''=\dfrac{-12}{-4}}\\\\
\boxed{\mathsf{x''=3}}\\\\\\\\\boxed{\mathsf{S=\{x\in\mathbb{R}~|~-4,3\}}} \mathsf{x'=\dfrac{+2+14}{-4}}\\\\\\
\mathsf{x'=\dfrac{16}{-4}}\\\\
\boxed{\mathsf{x'=-4}}\\\\\\
\\\mathsf{x''=\dfrac{+2-14}{-4}}\\\\\\
\\\mathsf{x''=\dfrac{-12}{-4}}\\\\
\boxed{\mathsf{x''=3}}\\\\\\\\\boxed{\mathsf{S=\{x\in\mathbb{R}~|~-4,3\}}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bx%27%3D%5Cdfrac%7B%2B2%2B14%7D%7B-4%7D%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7Bx%27%3D%5Cdfrac%7B16%7D%7B-4%7D%7D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Bx%27%3D-4%7D%7D%5C%5C%5C%5C%5C%5C%0A%5C%5C%5Cmathsf%7Bx%27%27%3D%5Cdfrac%7B%2B2-14%7D%7B-4%7D%7D%5C%5C%5C%5C%5C%5C%0A%5C%5C%5Cmathsf%7Bx%27%27%3D%5Cdfrac%7B-12%7D%7B-4%7D%7D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Bx%27%27%3D3%7D%7D%5C%5C%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7BS%3D%5C%7Bx%5Cin%5Cmathbb%7BR%7D%7E%7C%7E-4%2C3%5C%7D%7D%7D)
Qualquer dúvida, deixe nos comentários.
Bons estudos.
Basta substituirmos os valores de F(x), G(x) e H(x).
Vamos aos cálculos:
Chegamos em uma equação de 2° grau. Para resolvermos e encontrar as duas raízes possíveis, vamos usar Bhaskara. Vamos aos cálculos.
Usaremos a forma ax² + bx + c = 0 para encontrar os coeficientes.
Vamos agora encontrar as duas raízes possíveis.
Qualquer dúvida, deixe nos comentários.
Bons estudos.
Perguntas interessantes
Português,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás