Dadas as funções f(x) = x – 1; g(x) = x² + 3; h(x) = 5x² – 2x + 1, calcule: a) f(g(x)); b) g(h(x)); c) g o f; d) h o f; e) g(f(2)); f) h(g(1))
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
f(x) = x – 1;
g(x) = x² + 3;
h(x) = 5x² – 2x + 1, calcule:
a) f(g(x));
f(x) = x – 1
g(x) = x² + 3
f[g(x)] = x² + 3 - 1
f[g(x)] = x² + 2
_____________
b) g(h(x));
h(x) = 5x² – 2x + 1
g(x) = x² + 3
g[h(x)] = (5x² – 2x + 1)² + 3
g[h(x)] =
(5x² – 2x + 1).(5x² – 2x + 1)+3
= 25x^4 - 10x^3 + 5x^2 - 10x^3 + 4x^2 - 2x + 5x^2 - 2x + 1 + 3
= 25x^4 - 20x^3 + 14x^2 - 4x + 4
________
c) g o f;
g(x) = x² + 3
f(x) = x – 1
G o f = (x-1)² + 3
G o f = x² - 2x + 1 + 3
G o f = x² - 2x + 4
---------------
d) h o f;
h(x) = 5x² – 2x + 1
f(x) = x – 1
H o f = 5.(x-1)² – 2.(x-1) + 1
H o f = 5.(x² – 2x + 1) - 2x + 2 + 1
H o f = 5x² – 10x + 5 - 2x + 3
H o f = 5x² – 12x + 8
---------------
e) g(f(2));
f(x) = x – 1
g(x) = x² + 3
g [f(x)] = (x-1)² + 3
g[f(2)] = (2-1)² + 3
g[f(2)] = 1+3
g[f(2)] = 4
____________
f) h(g(1))
g(x) = x² + 3;
h(x) = 5x² – 2x + 1
h[g(x)] = 5x² – 2x + 1
h[g(x)] = 5.(x² + 3)² – 2.(x² + 3) + 1
h[g(1)] = 5.(1² + 3)² - 2.(1² + 3) + 1
h[g(1)] = 5.(1+3)² - 2.(1+3) + 1
h[g(1)] = 5.(4)² - 2.4 + 1
h[g(1)] = 5.16 - 8 + 1
h[g(1)] = 80 - 7
h[g(1)] = 73